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On-Orbit Servicing 

Density of Space Debris in LEO and 
GEO orbit   

Servicer satellite equipped with a robotic arm (left) 
approaching a client satellite (right) 
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•  Maintenance and life extension of existing satellite 
•  Active space debris removal 



Why Robotic Facilities? 

Space Scenario:  
Servicer satellite with manipulation arm 
and client satellite 

On-ground scenario: 
The robot simulates the dynamics of the satellite 
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•  6 dof dynamics simulation 
•  Mass/inertia pars. can be easily changed 
•  Reproduction of microgravity 
•  Large workspace  



On-ground Robotic Simulator in DLR-RM 
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•  Maintenance and life extension of existing satellite 
•  Active space debris removal 

On-ground Robotic Simulator in DLR (2011) 



Force-Torque Sensor (FTS) 

Gripper and stereocamera system 

Servicer satellite: KUKA KR-120 Client satellite: KUKA KR-120 

Light-Weight Robot (LWR) 
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Force-Torque Sensor (FTS) 

On-ground Robotic Simulator in DLR-RM: the OOS-SIM 



On-ground Robotic Simulator in DLR-RM: the OOS-SIM 

Force-Torque Sensor (FTS) 

Gripper and stereocamera system Light-Weight Robot (LWR) 

Force-Torque Sensor (FTS) 



 
Industrial  

Robot 

 
Force-torque  

sensor 

The DLR OOS-SIM 
q  Data flow of the target simulator 

 
 
q  Data flow of the free-floating robot simulator 
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Control modes 

q  Semi-autonomy 
 
•  Stereo camera at the 

end-effector  
•  Visual servoing   
 

The LWR can be controller in position or torque mode for different operations:  
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q  Shared control 

•  torque input from the 
visual-servoing and 
telepresence 

q  Telepresence  

•  Remote human operator  
      with haptic interface 
•  Teleoperation with force-

feedback 



Space link experiment 
 
•  Passive bilateral controllers  have been developed to cope with time delay and was 

tested on a  space link infrastructure 

Targeted scenario           Implemented scenario 

IROS 2017 Workshop • The DLR On-Orbit Servicing Simulator  •  M. De Stefano, J. Artigas  • Sept. 24, 2017 • Slide  12 

Targeted scenario  Experimental setup  

ASTRA-Experiment 
To connect a master – slave system located on Earth through a real GEO relay 
infrastructure  



The OOS-Sim facility 
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3. Factor that affect the free-floating dynamics simulation on a robot 
 
4. Reproducing free-floating dynamics: An Energy-based approach 

 
 

 
Time delay  

•  Time delay between measured force-torque and command to the robot  
     causes system instability  

•  Virtual energy is generated due to intrinsic latencies 
 
 
 
Discretization 

•  Standard Euler Integrator leads to generation of energy and position drifts  
 
•  Implicit integration methods require a numerical and iterative solution, 
 
•  Iterative solutions can be prohibitive for real-time determinism. 
 

 

Reproducing free-floating dynamics with Robotic Facilities  



Time Delay: Problem Statement  
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Energy without time delay, with time delay and angular velocity comparison 

axis in 1-DoF between two rigid walls. According to Euler
laws of motion, the body should keep rotating with constant
velocity. Fig. 3 shows the energy Ei in the ideal case
(dashed line) and the energy ETD considering the time delay
effects. A delay of 10 ms is considered here. The time delay
introduces negative energy (by means activity) in the system.
As can be seen in the bottom plot of Fig. 3, the desired

Fig. 3. Simulated virtual mass bouncing between two walls: Ei: ideal
energy, ETD : energy considering the Td effect, !: angular velocity

dynamics is affected. The time delay in the network causes
a divergence of the angular velocity !TD with respect to
the ideal velocity !i. For this reason, the system has an
active behaviour. The passivity of a network can be checked
using the quadratic norm of its scattering operator S with
the condition |S|2  1. It can be proved that, if a network
contains a delay, no matter how small, the passivity condition
is not fulfilled [17]. Brown and Colgate proposed in [10]
a minimun mass which can be simulated passively. It is
proven that no explicit passive numerical algorithm exists,
unless the virtual mass is greater than this minimum value.
As a matter of fact, the described satellite simulator works
according to the Colgate criterion. It is not the aim of this
article to explore the minimum allowed mass for stability,
but rather to identify energy leaks of the system, like time
delay, which can destabilize the system. The benefit of using
TDPA is that it can be applied without detailed models of
the system, including the robot dynamics. Moreover, using
the network representation, the passivity of a network can
be analyzed by checking the power contribution of each
network. By definition in [13], the one-port network N with
initial energy E(0) at time t = 0 is continuous time passive
if and only if:

E(t) = E(0) +

Z t

0
F (t)v(t)dt � 0, 8t > 0 (4)

with Force F (t) 2 R and velocity v(t) 2 R. TDPA
introduces the Passivity Observer (PO), and the Passivity
Controller (PC) able to create a passive network.

III. PROPOSED METHOD

The robot dynamics used in the proposed method is
described in Cartesian space. The manipulator equation is
defined as:

⇤(xe)ẍe + ⌘(xe, ẋe)ẋe + g(xe) = �, (5)

where ⇤ 2 R6⇥6 is the cartesian matrix, ⌘ 2 R6⇥6 is the
coriolis cartesian matrix and g 2 R6⇥1 is the gravity vector.
� 2 R6⇥1 represents the contribution of the end-effector
forces FC , due to the joint actuator, and F represents the
forces due to the contact with the environment. FC can be
written as:

FC = F + �. (6)

The cartesian terms are expressed as folllow:

⇤(xe) = J

�T
MJ

�1, (7)
⌘(xe, ẋe)ẋe = J

�T
Cq̇ � ⇤J̇ q̇, (8)

g(xe) = J

�T
G. (9)

where M,C,G are the inertia matrix, the coriolis matrix
and the gravity vector expressed in joints space. We assume
that the Jacobian J 2 R6⇥6 has full row rank and singular-
ities are not taken into account.
In the simulation model, the external forces F which simulate
the sensor are modeled as a virtual environment via a
discrete-time spring damper with high stiffness given by the
transfer function:

H(z) = Kwall +Dwall
z � 1

�Tz
, (10)

where Kwall is a stiffness gain and Dwall is a damping gain.
In order to analyze the stability of the system, the following
simplifications and assumptions are used:

• The controller of the robot is known.
• Only the effects of the time delay are considered.

The modeling process is divided into two steps: first, the
system is represented as a block diagram. The block diagram
is a straightforward representation of the system as an
interconnection of transfer functions and feedbacks. How-
ever, if energy considerations are to be taken into account,
this representation might not be well suited. To that end,
we propose a second step using the mechanical-electrical
analogies, which maps the model into the electrical domain.
As it will be seen, this facilitates the passivity analysis and
helps to identify energy leaks, that is, undesired sources of
energy that appear due to the delay in the system.

A. Block diagram
Fig. 4 shows the block diagram of the considered system.

The robot is represented as an admittance R (that generates
a velocity vis), C is the controller and we assume that both
are known. E is the virtual environment modeled in the
simulation as (10). During the experiments, the reaction of
the environment will be measured by a forces and torques
sensor. For the sake of simplicity, the overall time delay is
concentrated at a single location in the model (TD). In the

783
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Fig. 3: Problem statement: time delay effect for the linear
and angular satellite velocity. Ideal velocity (dashed line)
and velocity with time delay T D (solid line).

Example 1: Consider the system in Fig. 2 with a time
delay of 10 ms acting on the linear and angular velocities
commanded from the simulated dynamics to the robot.
The simulated mass of the satellite is 60 Kg and the
inertia parameters are Ixx = 18 Kgm2, Iyy = 20 Kgm2 and
Izz = 22 Kgm2. Furthermore, the initial conditions are defined
as follows: vinit = [0.1 0.05 0.1] m/s , ωinit = [2 −3 3] deg/s.
Fig. 3 shows the difference between the ideal case velocity
(dashed line) and the resulting velocity in the delayed
scenario (solid line), for the same initial conditions.
This simulation reveals the energy introduced by the delay,
resulting in an increased velocity with respect to the ideal
case. Therefore the system becomes unstable.

Remark 1: Note that, external forces and torques in the
proposed example are modeled with a discrete-time spring
and damper with high stiffness due to the absence of a
forces-torques sensor in the simulation. The robot end-
effector is initialized to move in a virtual workspace where
the physical constraints (i.e a virtual walls) generate these
external forces and torques which represent the input to the
satellite dynamics.
As will be seen in the next section, the system can
be stabilized by enforcing a non-active behavior using
passivity-based techniques.

III. ENFORCING PASSIVITY THROUGH TDPA

This section provides a background on TDPA [12] and
shows how it can be exploited to render the robotic simulator
outlined in Sec. II [6] passive. The analysis is made in
discrete time since the simulation of the target dynamics,
the desired velocity for the robot and the measured force
are discrete quantities. Non-passive effects due to this ap-
proximation can be addressed using the techniques proposed

in [10]. Consider a dynamic system S with a power port
(F(k),v(k)) ∈Rn ×Rn which energetically interacts with the
environment. F(k) is a force-like variable and v(k) a velocity-
like variable. The system can either have an impedance
causality (velocity in/force out) or and admittance causality
(force in/velocity out). S is passive if there is a lower
bounded energy function E(k) such that:

E(m) = E(0)+
m

∑
k=0

FT (k)v(k)∆T ≥ 0, (5)

where E(m) is the energy flowing through the port F(k),v(k)
and E(0) represents the initial energy stored in the system
and ∆T is the sampling time. Loosely speaking (5) simply
states that the total energy extractable from the system is
at most its initially stored energy. More information can be
found in [18]. If E(m) < 0, then the system is producing
energy and such a regenerative effect can destabilize the
system [19]. The main idea behind the TDPA is to observe
the energy flow (5) using the PO and, in case E(m) < 0,
to activate the PC, a variable damper that dissipates E(m).
In case of admittance causality, the PC has the following
expression:

vPC(k) = β (k)F(k), (6)

where β (k) ∈ Rn×n is a positive semi-definite matrix com-
puted at time k if (5) has been violated. If E(k)< 0, β (k) is
chosen in such a way that FT (k)β (k)F(k)∆T = −E(k), i.e.
the dissipated energy is equal to the produced one. If E(k)≥
0, β (k) = 0. This variable damping strategy allows to enforce
the passivity of the system. More details can be found in
[12]. In [6], Time Delay Power Network (TDPN) [20] have
been exploited for investigating the energetic structure of the
robotic simulator described in Sec. II and for localizing the
possible sources of energy causing unstable behaviors in the
system. TDPA has then been exploited for stabilizing the
robot simulator. As in [6], the following energy exchange
corresponding to the TDPN found in the system is monitored
through a PO:

Eobs(m) =
m

∑
k=0

FT
c (k)(v1(k)− v1(k− µ))∆T =

m

∑
k=0

n

∑
i=1

Fc,i(k)(v1,i(k)− v1,i(k− µ))∆T =
n

∑
i=i

Eobsi
, (7)

where Fc is the total force (due to the control and due to
external interactions) acting on the robot (see Sec. IV-A for
more details) and µ is the delay expressed as a multiple
of the sampling period (i.e. Td = µ∆T ). The ideal velocity
to be implemented by the robot is v1(k) while v1(k− µ) is
the velocity actually received. Fc,i and v1,i indicate the ith

component of Fc and of v1 respectively. The term

Eobsi
=

m

∑
k=0

Fc,i(k)(v1,i(k)− v1,i(k− µ))∆T (8)

is the energy observed on the ith component. In [6], in order
to simplify the design of the PC, each degree of freedom
is treated separately and the damping coefficient is chosen

Control goals 

1.  Ensure a stable system with the passivity condition 

2.  Guarantee the performance of the simulated dynamics on a robot  
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Passivity Condition: 
 
 
 
 
 
 
If E(m) <  0, then the system is producing energy and such a regenerative 
effect can destabilize the system 



Modeling: Making the system passive 

1.  Block diagram 

2.  Electrical and Network 
scheme 

 
3.  Energy leaks can be 

seen in electrical 
network 

proposed scheme, stability is dependent on the amount of
delay but not on its location.2 The satellite dynamics is repre-
sented by a single block, whose output is the velocity vector
v1(t) and inputs are the forces and torques F , measured by

F

v1(t) v
is

(t)

C R

F
C

e

-

SAT. DYN.

E

TD
v1(t � T

d

)

v1(t)

+ - F

+

Fig. 4. Model of the problem statement

the sensor. v1(t) is a 6x1 vector composed of v(t) from (1)
and !(t) from (2), F is the 6x1 forces/torques vector:

v1(t) = [v(t),!(t)]T ;F (t) = [FM (t), ⌧M (t)]T . (11)

B. Electrical and Network representation
Analogies are useful since they allow to analyze a domain

by means of elements and laws, that belong to another.
In this context, it is convenient to analyze the system as
Hamiltonian ports [18] or, as considered in this paper, in
electrical domain. The conventional mechanical-electrical
analogy, namely velocity-current analogy, maps forces into
voltages and velocities into currents. The model represented
in the electrical domain is shown in Fig. 5. As it can be seen,
the electrical scheme unveils the power conjugated pairs that
describe each network port in the system. The forces and
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Fig. 5. Electrical analog of the system in Fig. 4

torques coming from the sensor are modeled as an ideal force
generator F that acts on the impedance ZM , which represents
the virtual mass and its analog is an inductance. Through a
dependent current source, the velocity through the mass is
fed to the controller ZC , which, in turn, moves the robot,
represented by a general impedance, ZR. The environment is
represented by an impedance ZE . Furthermore, Fig. 5 shows
one and two-port networks of the system where N0 is a
one-port network containing the sensor and N1 is a two-port
transmission network; Fig. 5 shows the ideal case, where
the velocity of the virtual mass is commanded to the robot
(through the controller). N3 is a network containing the robot

2As long as the delay location is anywhere in the main loop.

and a position controller. The force across the controller (and
the robot) is given by:

FC = v1(t)
Zc(t)ZRE(t)

Zc(t) + ZRE(t)
,

ZRE = ZR(t) + ZE(t),

ZRE being the equivalent serial impedance of the robot and
the environment.
In the proposed electrical scheme in Fig. 6, it is assumed that
the time delay is located between the networks N1 and N3

and it produces a delayed velocity v1(t� Td). N2, composed
of ZPC , is a time varying damper, which, as will be shown in
the upcoming section, will ensure the stability of the system
by dissipating the active energy introduced due to the time
delay. One of the main benefits of the network representation
is that it allows to analyze the passivity of the system. In
Fig. 6, the network NT is a two-port network, which contains
a pure time delay. It can be proven, that such a network
cannot be guaranteed to be passive due to the phase lag [17].
Thus, NT represents an active network, with input v1(t) and
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Fig. 6. Proposed system in the electrical / network domain with the PC

output v1(t�Td), and cross voltage, i.e. FC . We propose the
electrical scheme in Fig. 6 as a new approach for a robotic
closed loop system that contains internal communication
delays. Based on this abstraction, passivity as a stabilization
tool is applied to ensure stable performance while conserving
the desired simulated momentum of the virtual mass.

IV. 6 DOF PASSIVITY APPLIED TO THE SATELLITE
DYNAMICS WITH TIME DELAY

As previously stated, passivity is a sufficient condition
for stability and can be applied to linear and nonlinear
systems. The TDPA strategy is used to make the discrete
virtual mass dynamics passive. The effects of time delay are
also considered and the system, thus, is rendered passive.
Furthermore, passivity of individual network elements of a
cascaded network ensures overall system passivity and in
turn, stability. The Passivity Observer (PO) is here defined
by looking at the network NT . The PO observes the energy of
the network and the PC acts as a variable damper modulated
according to the amount of active energy observed by the
PO.

A. Passivity Observer (PO)

The network NT shown in Fig. 6 describes the active
network to be passivated. NT is a two-port network where
the net energy, which is the difference between the input and

proposed scheme, stability is dependent on the amount of
delay but not on its location.2 The satellite dynamics is repre-
sented by a single block, whose output is the velocity vector
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Analogies are useful since they allow to analyze a domain

by means of elements and laws, that belong to another.
In this context, it is convenient to analyze the system as
Hamiltonian ports [18] or, as considered in this paper, in
electrical domain. The conventional mechanical-electrical
analogy, namely velocity-current analogy, maps forces into
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torques coming from the sensor are modeled as an ideal force
generator F that acts on the impedance ZM , which represents
the virtual mass and its analog is an inductance. Through a
dependent current source, the velocity through the mass is
fed to the controller ZC , which, in turn, moves the robot,
represented by a general impedance, ZR. The environment is
represented by an impedance ZE . Furthermore, Fig. 5 shows
one and two-port networks of the system where N0 is a
one-port network containing the sensor and N1 is a two-port
transmission network; Fig. 5 shows the ideal case, where
the velocity of the virtual mass is commanded to the robot
(through the controller). N3 is a network containing the robot

2As long as the delay location is anywhere in the main loop.

and a position controller. The force across the controller (and
the robot) is given by:

FC = v1(t)
Zc(t)ZRE(t)

Zc(t) + ZRE(t)
,

ZRE = ZR(t) + ZE(t),

ZRE being the equivalent serial impedance of the robot and
the environment.
In the proposed electrical scheme in Fig. 6, it is assumed that
the time delay is located between the networks N1 and N3

and it produces a delayed velocity v1(t� Td). N2, composed
of ZPC , is a time varying damper, which, as will be shown in
the upcoming section, will ensure the stability of the system
by dissipating the active energy introduced due to the time
delay. One of the main benefits of the network representation
is that it allows to analyze the passivity of the system. In
Fig. 6, the network NT is a two-port network, which contains
a pure time delay. It can be proven, that such a network
cannot be guaranteed to be passive due to the phase lag [17].
Thus, NT represents an active network, with input v1(t) and
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Fig. 6. Proposed system in the electrical / network domain with the PC

output v1(t�Td), and cross voltage, i.e. FC . We propose the
electrical scheme in Fig. 6 as a new approach for a robotic
closed loop system that contains internal communication
delays. Based on this abstraction, passivity as a stabilization
tool is applied to ensure stable performance while conserving
the desired simulated momentum of the virtual mass.

IV. 6 DOF PASSIVITY APPLIED TO THE SATELLITE
DYNAMICS WITH TIME DELAY

As previously stated, passivity is a sufficient condition
for stability and can be applied to linear and nonlinear
systems. The TDPA strategy is used to make the discrete
virtual mass dynamics passive. The effects of time delay are
also considered and the system, thus, is rendered passive.
Furthermore, passivity of individual network elements of a
cascaded network ensures overall system passivity and in
turn, stability. The Passivity Observer (PO) is here defined
by looking at the network NT . The PO observes the energy of
the network and the PC acts as a variable damper modulated
according to the amount of active energy observed by the
PO.

A. Passivity Observer (PO)

The network NT shown in Fig. 6 describes the active
network to be passivated. NT is a two-port network where
the net energy, which is the difference between the input and

either in the Cartesian or in the joint space of a robot.
In [12] and [13] a geometric solution to this problem is pro-
posed but the task that the robot can execute is constrained.
In [14], the PC is weighted using an inertia dependent matrix
as this turned out to be very useful for haptic applications.
In [15], a technique for dissipating all the energy in the
null space of a redundant robot is suggested. This is an
appealing solution but it is not applicable to the considered
context since most of the facilities for rendering satellite
dynamics do not have redundancy (see, e.g., [3] and [4]).
In [5], TDPA has been exploited for addressing the problem
of stabilizing a robotic simulator of a satellite dynamics.
Exploiting a network representation of the overall system, it
was possible to detect the source of energy production due
to the time delay. The produced energy was observed and
dissipated separately for each Cartesian DoF. This approach
is sufficient for guaranteeing the stability of the system
but it dissipates more energy than what is necessary. This
over-damping causes a degradation of the performance and
a deviation of the robot from the desired dynamics to be
simulated.
The contribution of this paper is to extend the approach in [5]
in order to reduce its conservatism and to take performance
into account explicitly. The energy production due to the time
delay is observed globally, rather than separately on each
Cartesian direction. Furthermore, an optimization problem
for modulating the PC is introduced and analytically solved.
The designed PC dissipates all the generated energy while
keeping the dynamics reproduced by the robot as close
as possible to the desired dynamics. In this way it is
possible to guarantee a stable behavior while maximizing
the performance. The effectiveness of the proposed approach
is validated by simulations and experimentally. The testbed
is based on a Light Weight Robot (LWR) (see Fig. 1)
commanded in position mode and equipped with a force-
torque sensor at the end-effector.
The paper is organized as follows: Sec. II formally states
the problem to be addressed. Sec. III provides some back-
ground on the approach proposed in [5] and it analyzes its
drawbacks. Sec. IV introduces and solves the optimization
problem used for tuning the PC. Experimental and simulation
results can be found in Sec. V with the final conclusions
in Sec. VI. Further experiments can be found also in the
accompanying video.

II. PROBLEM STATEMENT

When using position controlled robots, a suitable strategy
for implementing a desired dynamics is admittance control
[4]. The target dynamics is implemented on an external
computer and it accepts as an input the external wrench
measured by a force-torque sensor mounted on the end-
effector of the robot where the mock-up of the satellite is
mounted on. Using this information, the computer simulates
the next position (or velocity) of the satellite and it sends it
to the robot that has to move accordingly. The model of the

target dynamics is given by:

v(t) =
∫ t

0

FCM(t)

M
dt, (1)

ω(t) =
∫ t

0
I−1(τCM(t)−ω(t)× Iω(t))dt, (2)

where FCM(t) ∈ R3×1 are the forces and τCM(t) ∈ R3×1 are
the torques applied on the Center of Mass (CM) of the
satellite frame already compensated with the gravity vector in
the model. v(t) ∈R3×1 is the linear velocity of satellite CM
and ω(t) ∈ R3×1 is the CM angular velocity. The simulated
virtual mass is represented by the inertial characteristics of
mass M ∈ R and Inertia I ∈ R3×3 that are defined by the
physics of the satellite. Since the sensor is placed on the
end-effector of the robot, in order to represent the measured
wrench in the CM frame, the following transformations are
necessary:

FCM = RSF,CM Fe, (3)

τCM = pSF,CM × (RSF,CM Fe)+RSF,CM τe, (4)

where RSF,CM is the rotation matrix between the end-effector
sensor frame (SF) and the simulated center of mass (CM) on
the robot; and pSF,CM is the vector from the end-effector SF
to the simulated center of mass. The integration of (1) and (2)
provides a desired input to the robot. Thus, the robot using
the inverse kinematics [16] renders the satellite dynamics in
Cartesian space.
In the following, we will consider v1(t) = [vT (t),ωT (t)]T ∈
R6 to be the velocity of the satellite and FE = [Fe

T ,τe
T ]T ∈

R6 to be the external wrench.
Ideally the velocity that the robot has to render should
be equal to v1(t). Nevertheless, the discretization process
results in a distortion of the desired dynamics. This distortion
is mainly due to zero-order holds, quantization elements,
sensor noise and time delay. In particular, time delays occur
due to communications between processes and devices, e.g.
between the force-torque sensor and the main CPU, or
between processes that are computed in different CPUs.
Fig. 2 shows the closed loop scheme of a virtual dynamics
rendered on a position controlled robot with a time delay T D
between the virtual dynamics computation and the robot. The
satellite dynamics block (SAT. DYN.) represents the discrete
simulation of (1), (2) and the measured wrench transforma-
tion in (3) and (4). R represents the robot controlled to track
the desired velocity. E represents the interaction with the
environment that produces a wrench FE .
The goal of this paper is to design a control strategy that
stabilizes the system represented in Fig. 2 while optimizing
the performance, namely while guaranteeing that the velocity
implemented by the robot stays as close as possible to v1(t).

v1(t) v1(t −Td)FE
R ET DSAT.DYN.

Fig. 2: Problem statement and model description
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proposed scheme, stability is dependent on the amount of
delay but not on its location.2 The satellite dynamics is repre-
sented by a single block, whose output is the velocity vector
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the sensor. v1(t) is a 6x1 vector composed of v(t) from (1)
and !(t) from (2), F is the 6x1 forces/torques vector:

v1(t) = [v(t),!(t)]T ;F (t) = [FM (t), ⌧M (t)]T . (11)

B. Electrical and Network representation
Analogies are useful since they allow to analyze a domain

by means of elements and laws, that belong to another.
In this context, it is convenient to analyze the system as
Hamiltonian ports [18] or, as considered in this paper, in
electrical domain. The conventional mechanical-electrical
analogy, namely velocity-current analogy, maps forces into
voltages and velocities into currents. The model represented
in the electrical domain is shown in Fig. 5. As it can be seen,
the electrical scheme unveils the power conjugated pairs that
describe each network port in the system. The forces and
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Fig. 5. Electrical analog of the system in Fig. 4

torques coming from the sensor are modeled as an ideal force
generator F that acts on the impedance ZM , which represents
the virtual mass and its analog is an inductance. Through a
dependent current source, the velocity through the mass is
fed to the controller ZC , which, in turn, moves the robot,
represented by a general impedance, ZR. The environment is
represented by an impedance ZE . Furthermore, Fig. 5 shows
one and two-port networks of the system where N0 is a
one-port network containing the sensor and N1 is a two-port
transmission network; Fig. 5 shows the ideal case, where
the velocity of the virtual mass is commanded to the robot
(through the controller). N3 is a network containing the robot

2As long as the delay location is anywhere in the main loop.

and a position controller. The force across the controller (and
the robot) is given by:

FC = v1(t)
Zc(t)ZRE(t)

Zc(t) + ZRE(t)
,

ZRE = ZR(t) + ZE(t),

ZRE being the equivalent serial impedance of the robot and
the environment.
In the proposed electrical scheme in Fig. 6, it is assumed that
the time delay is located between the networks N1 and N3

and it produces a delayed velocity v1(t� Td). N2, composed
of ZPC , is a time varying damper, which, as will be shown in
the upcoming section, will ensure the stability of the system
by dissipating the active energy introduced due to the time
delay. One of the main benefits of the network representation
is that it allows to analyze the passivity of the system. In
Fig. 6, the network NT is a two-port network, which contains
a pure time delay. It can be proven, that such a network
cannot be guaranteed to be passive due to the phase lag [17].
Thus, NT represents an active network, with input v1(t) and
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Fig. 6. Proposed system in the electrical / network domain with the PC

output v1(t�Td), and cross voltage, i.e. FC . We propose the
electrical scheme in Fig. 6 as a new approach for a robotic
closed loop system that contains internal communication
delays. Based on this abstraction, passivity as a stabilization
tool is applied to ensure stable performance while conserving
the desired simulated momentum of the virtual mass.

IV. 6 DOF PASSIVITY APPLIED TO THE SATELLITE
DYNAMICS WITH TIME DELAY

As previously stated, passivity is a sufficient condition
for stability and can be applied to linear and nonlinear
systems. The TDPA strategy is used to make the discrete
virtual mass dynamics passive. The effects of time delay are
also considered and the system, thus, is rendered passive.
Furthermore, passivity of individual network elements of a
cascaded network ensures overall system passivity and in
turn, stability. The Passivity Observer (PO) is here defined
by looking at the network NT . The PO observes the energy of
the network and the PC acts as a variable damper modulated
according to the amount of active energy observed by the
PO.

A. Passivity Observer (PO)

The network NT shown in Fig. 6 describes the active
network to be passivated. NT is a two-port network where
the net energy, which is the difference between the input and
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is the energy observed on the ith component. In [5], in order
to simplify the design of the PC, each degree of freedom
is treated separately and the damping coefficient is chosen
to have a diagonal structure. β (k) = diag(β1(k) . . .βn(k)). At
each time step, each Eobsi

is observed and the ith component
of the velocity sent to the robot is modified by a PC as:

v2,i(k) = v1,i(k− µ)−βi(k)Fc,i(k) (9)

where, if Eobsi
(k) < 0, βi(k)Fc,i(k)2∆T = −Eobsi

(k). In this
way it is straightforward to choose βi(k). This strategy
enforces passivity of the overall system but it is conservative
and can lead to unnecessary decrease in the performance. In
fact, if Eobs(m) ≥ 0 the overall system is passive and no
corrective actions should be necessary. Nevertheless, using
the afore mentioned strategy, if Eobs,i < 0 for some i =
1, . . . ,n then some dissipation, introduced by (9), is injected
into the system. This results in an over-damped system and
in turn, it can lead to noticeable deviations from the ideal
behavior.

IV. PERFORMANCE ORIENTED METHOD FOR SIMULATING

A FREE-FLOATING DYNAMICS ON A ROBOT

In this section, the performance oriented method for sim-
ulating the free floating dynamics on a position controlled
robot is proposed. The method considers a unique energy
observer (unlike in [5]) that monitors the energy production
due to the delay and an optimally modulated PC for ensuring
passivity and for maximizing the performance of the simu-
lator.

A. Design of the Forces Estimator

It was shown that the satellite dynamics commands a
velocity to the robot through the inverse kinematics, thus,
a desired joint position q is commanded to the robot. We
illustrate the method for the 7 DoF LWR that we are using in
our experiments but the method can be easily generalized to
other robots. In order to estimate the Cartesian forces acting
on the LWR end effector (i.e. redundant robot), we define the
robot dynamics (alredy compensated with the gravity vector)
as follows:

τ = Hq̈+Cq̇, (10)

where H ∈ R7×7 is the inertia matrix and C ∈ R7×7 is the
Coriolis matrix of the manipulator. q, q̇, q̈∈R7×1 are the mea-
sured joint position, velocity and acceleration, respectively. τ
∈R7×1 is the calculated joint torque vector due to the motion
of the robot in position mode. The internal acting force of
the manipulator Γ ∈ R6×1 are calculated as follow:

Γ = J
T

τ. (11)

where J
T

is the pseudo-inverse Jacobian matrix traspose [20].
Furthermore, J is chosen to be dynamically consistent and it
is defined as:

J = H−1JT Λ . (12)

where Λ ∈ R6×6 is the inertia matrix H in the Cartesian
space:

Λ = (JH−1JT )−1. (13)

We assume that the Jacobian has full rank and singularities
are not taken into account. The satellite dynamics reacts also
to external forces interaction. For this reason, the environ-
mental forces FE ∈R6×1, measured by a force-torque sensor
are also taken into account. Therefore, the Forces Estimator
Fc ∈ R6×1 is composed by the forces due to the motion of
the robot Γ and measured forces FE :

Fc = Γ+FE. (14)

Fc will be used to design the energy observer and the
passivity controller.

B. Passivity Controller

We observe the energy flow reported in (7) using a single
PO and we dissipate the produced energy by tuning a
multidimensional PC that is acting on the velocity provided
to the robot as:

v2(k) = v1(k− µ)−β (k)Fc(k) (15)

We keep on considering a diagonal damping coefficient
β (k) = diag(β1(k), . . . ,βn(k)). This is not a restrictive as-
sumption because by properly tuning the elements of β (k) it
is possible to act on all the possible Cartesian directions. In
order to make the robotic simulator passive and, at the same
time, to maximize the tracking performance, β (k) is chosen
in such a way the following conditions hold:

• If Eobs(k)< 0, then FT
c (k)β (k)Fc(k)∆T =−Eobs(k)

• The compensated velocity v2(k) in (15) has to be as
close as possible to the target satellite velocity v1(k).

The first condition guarantees the passivity of the system
while the second one ensures the best performances con-
sistent with the passivity of the system. In order to meet
these conditions, a minimization problem will be designed
for tuning the PC. Fig. 4 shows the scheme of the elements
presented in this section. The environmental forces and
torques (E) measured with the sensor are sent to the satellite
dynamics (1) and (2) that provides a vector v1(k). T D is
the time delay located into the loop that is responsible for
sending the corrupted velocity v1(k− µ) to the robot. This
velocity is corrected with the PC in (15) and it represents the
input to the robot (R). FC is the dynamics forces estimator
(14). The PO is the energy observer (7) that provides a scalar
to the minimization problem (MIN) in order to compute the
optimal coefficients β .

FEFE
Fc

Fc

Eobs(n)

v1(k)

v1(k)

v1(k− µ) v2(k)

βi Γ

PO

PC

FCMIN

R ET D

SAT.DYN

Fig. 4: Scheme of the control elements
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Fig. 3: Problem statement: time delay effect for the linear
and angular satellite velocity. Ideal velocity (dashed line)
and velocity with time delay T D (solid line).

Example 1: Consider the system in Fig. 2 with a time
delay of 10 ms acting on the linear and angular velocities
commanded from the simulated dynamics to the robot.
The simulated mass of the satellite is 60 Kg and the
inertia parameters are Ixx = 18 Kgm2, Iyy = 20 Kgm2 and
Izz = 22 Kgm2. Furthermore, the initial conditions are defined
as follows: vinit = [0.1 0.05 0.1] m/s , ωinit = [2 −3 3] deg/s.
Fig. 3 shows the difference between the ideal case velocity
(dashed line) and the resulting velocity in the delayed
scenario (solid line), for the same initial conditions.
This simulation reveals the energy introduced by the delay,
resulting in an increased velocity with respect to the ideal
case. Therefore the system becomes unstable.

Remark 1: Note that, external forces and torques in the
proposed example are modeled with a discrete-time spring
and damper with high stiffness due to the absence of a
forces-torques sensor in the simulation. The robot end-
effector is initialized to move in a virtual workspace where
the physical constraints (i.e a virtual walls) generate these
external forces and torques which represent the input to the
satellite dynamics.
As will be seen in the next section, the system can
be stabilized by enforcing a non-active behavior using
passivity-based techniques.

III. ENFORCING PASSIVITY THROUGH TDPA

This section provides a background on TDPA [12] and
shows how it can be exploited to render the robotic simulator
outlined in Sec. II [6] passive. The analysis is made in
discrete time since the simulation of the target dynamics,
the desired velocity for the robot and the measured force
are discrete quantities. Non-passive effects due to this ap-
proximation can be addressed using the techniques proposed

in [10]. Consider a dynamic system S with a power port
(F(k),v(k)) ∈Rn ×Rn which energetically interacts with the
environment. F(k) is a force-like variable and v(k) a velocity-
like variable. The system can either have an impedance
causality (velocity in/force out) or and admittance causality
(force in/velocity out). S is passive if there is a lower
bounded energy function E(k) such that:

E(m) = E(0)+
m

∑
k=0

FT (k)v(k)∆T ≥ 0, (5)

where E(m) is the energy flowing through the port F(k),v(k)
and E(0) represents the initial energy stored in the system
and ∆T is the sampling time. Loosely speaking (5) simply
states that the total energy extractable from the system is
at most its initially stored energy. More information can be
found in [18]. If E(m) < 0, then the system is producing
energy and such a regenerative effect can destabilize the
system [19]. The main idea behind the TDPA is to observe
the energy flow (5) using the PO and, in case E(m) < 0,
to activate the PC, a variable damper that dissipates E(m).
In case of admittance causality, the PC has the following
expression:

vPC(k) = β (k)F(k), (6)

where β (k) ∈ Rn×n is a positive semi-definite matrix com-
puted at time k if (5) has been violated. If E(k)< 0, β (k) is
chosen in such a way that FT (k)β (k)F(k)∆T = −E(k), i.e.
the dissipated energy is equal to the produced one. If E(k)≥
0, β (k) = 0. This variable damping strategy allows to enforce
the passivity of the system. More details can be found in
[12]. In [6], Time Delay Power Network (TDPN) [20] have
been exploited for investigating the energetic structure of the
robotic simulator described in Sec. II and for localizing the
possible sources of energy causing unstable behaviors in the
system. TDPA has then been exploited for stabilizing the
robot simulator. As in [6], the following energy exchange
corresponding to the TDPN found in the system is monitored
through a PO:

Eobs(m) =
m

∑
k=0

FT
c (k)(v1(k)− v1(k− µ))∆T =

m

∑
k=0

n

∑
i=1

Fc,i(k)(v1,i(k)− v1,i(k− µ))∆T =
n

∑
i=i

Eobsi
, (7)

where Fc is the total force (due to the control and due to
external interactions) acting on the robot (see Sec. IV-A for
more details) and µ is the delay expressed as a multiple
of the sampling period (i.e. Td = µ∆T ). The ideal velocity
to be implemented by the robot is v1(k) while v1(k− µ) is
the velocity actually received. Fc,i and v1,i indicate the ith

component of Fc and of v1 respectively. The term

Eobsi
=

m

∑
k=0

Fc,i(k)(v1,i(k)− v1,i(k− µ))∆T (8)

is the energy observed on the ith component. In [6], in order
to simplify the design of the PC, each degree of freedom
is treated separately and the damping coefficient is chosen

Ensure the stability of the robot with the passivity 
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is the energy observed on the ith component. In [5], in order
to simplify the design of the PC, each degree of freedom
is treated separately and the damping coefficient is chosen
to have a diagonal structure. β (k) = diag(β1(k) . . .βn(k)). At
each time step, each Eobsi

is observed and the ith component
of the velocity sent to the robot is modified by a PC as:

v2,i(k) = v1,i(k− µ)−βi(k)Fc,i(k) (9)

where, if Eobsi
(k) < 0, βi(k)Fc,i(k)2∆T = −Eobsi

(k). In this
way it is straightforward to choose βi(k). This strategy
enforces passivity of the overall system but it is conservative
and can lead to unnecessary decrease in the performance. In
fact, if Eobs(m) ≥ 0 the overall system is passive and no
corrective actions should be necessary. Nevertheless, using
the afore mentioned strategy, if Eobs,i < 0 for some i =
1, . . . ,n then some dissipation, introduced by (9), is injected
into the system. This results in an over-damped system and
in turn, it can lead to noticeable deviations from the ideal
behavior.

IV. PERFORMANCE ORIENTED METHOD FOR SIMULATING

A FREE-FLOATING DYNAMICS ON A ROBOT

In this section, the performance oriented method for sim-
ulating the free floating dynamics on a position controlled
robot is proposed. The method considers a unique energy
observer (unlike in [5]) that monitors the energy production
due to the delay and an optimally modulated PC for ensuring
passivity and for maximizing the performance of the simu-
lator.

A. Design of the Forces Estimator

It was shown that the satellite dynamics commands a
velocity to the robot through the inverse kinematics, thus,
a desired joint position q is commanded to the robot. We
illustrate the method for the 7 DoF LWR that we are using in
our experiments but the method can be easily generalized to
other robots. In order to estimate the Cartesian forces acting
on the LWR end effector (i.e. redundant robot), we define the
robot dynamics (alredy compensated with the gravity vector)
as follows:

τ = Hq̈+Cq̇, (10)

where H ∈ R7×7 is the inertia matrix and C ∈ R7×7 is the
Coriolis matrix of the manipulator. q, q̇, q̈∈R7×1 are the mea-
sured joint position, velocity and acceleration, respectively. τ
∈R7×1 is the calculated joint torque vector due to the motion
of the robot in position mode. The internal acting force of
the manipulator Γ ∈ R6×1 are calculated as follow:

Γ = J
T

τ. (11)

where J
T

is the pseudo-inverse Jacobian matrix traspose [20].
Furthermore, J is chosen to be dynamically consistent and it
is defined as:

J = H−1JT Λ . (12)

where Λ ∈ R6×6 is the inertia matrix H in the Cartesian
space:

Λ = (JH−1JT )−1. (13)

We assume that the Jacobian has full rank and singularities
are not taken into account. The satellite dynamics reacts also
to external forces interaction. For this reason, the environ-
mental forces FE ∈R6×1, measured by a force-torque sensor
are also taken into account. Therefore, the Forces Estimator
Fc ∈ R6×1 is composed by the forces due to the motion of
the robot Γ and measured forces FE :

Fc = Γ+FE. (14)

Fc will be used to design the energy observer and the
passivity controller.

B. Passivity Controller

We observe the energy flow reported in (7) using a single
PO and we dissipate the produced energy by tuning a
multidimensional PC that is acting on the velocity provided
to the robot as:

v2(k) = v1(k− µ)−β (k)Fc(k) (15)

We keep on considering a diagonal damping coefficient
β (k) = diag(β1(k), . . . ,βn(k)). This is not a restrictive as-
sumption because by properly tuning the elements of β (k) it
is possible to act on all the possible Cartesian directions. In
order to make the robotic simulator passive and, at the same
time, to maximize the tracking performance, β (k) is chosen
in such a way the following conditions hold:

• If Eobs(k)< 0, then FT
c (k)β (k)Fc(k)∆T =−Eobs(k)

• The compensated velocity v2(k) in (15) has to be as
close as possible to the target satellite velocity v1(k).

The first condition guarantees the passivity of the system
while the second one ensures the best performances con-
sistent with the passivity of the system. In order to meet
these conditions, a minimization problem will be designed
for tuning the PC. Fig. 4 shows the scheme of the elements
presented in this section. The environmental forces and
torques (E) measured with the sensor are sent to the satellite
dynamics (1) and (2) that provides a vector v1(k). T D is
the time delay located into the loop that is responsible for
sending the corrupted velocity v1(k− µ) to the robot. This
velocity is corrected with the PC in (15) and it represents the
input to the robot (R). FC is the dynamics forces estimator
(14). The PO is the energy observer (7) that provides a scalar
to the minimization problem (MIN) in order to compute the
optimal coefficients β .

FEFE
Fc

Fc

Eobs(n)

v1(k)

v1(k)

v1(k− µ) v2(k)

βi Γ

PO

PC

FCMIN

R ET D

SAT.DYN

Fig. 4: Scheme of the control elements



Guarantee performance with a designed  optimization 
problem 

•  Performance is guaranteed through a multidimensional optimal damping as a result of a 
minimization problem: 

 
•  The minimization problem will force the velocity to stay as close as possible to the ideal 

value. The constraints to satisfy are: 
 

 

•  The minimization problem generates a             such that the active energy 
(produced by the delay) is dissipated and the velocity transmitted to the robot is 
as close as possible to the ideal target velocity.  

     

We can formulate the damping matrix selection problem as
the following optimization problem:

min
β (k)

∥v1(k− µ)−β (k)Fc(k)− v1(k)∥
2 (16)

where the the following inequality constraint has to be
satisfied:

∑m
k=0 Fc(k)T β (k)Fc(k)∆T = Ēobs(m) (17)

where

Ēobs(m) =

⎧

⎨

⎩

0 if Eobs(m)≥ 0

−Eobs(m) if Eobs(m)< 0.
(18)

The function to be minimized f (β (k)) = ∥v1(k − µ) −
β (k)Fc(k)− v1(k)∥2 is convex with respect to βi(k) (the
variables to be optimized) and the Hessian of f (β ) is positive
semi-definite. Thus (16) is a convex optimization problem
and, therefore, it is suitable to be solved in real-time. The
minimization problem forces a choice of β (k) such that the
energy produced because of the delay is dissipated and the
velocity transmitted to the robot is as close as possible to
the ideal target velocity.
Notice that we have not set any constraint on the sign
of the elements on the diagonal of β (k) and, therefore,
it may happen that β (k) is not positive definite. Such a
choice does not prevent from achieving passivity since all
the produced energy keeps on being dissipated. Furthermore,
the elimination of the positivity constraint on the βi terms
provides with a greater flexibility in the choice of the mul-
tidimensional damper and, in principle, to a better solution
for the minimization problem. It is possible to reformulate
(16) as a quadratic problem. For ease of notation, we group
the velocity terms and we omit the dependency on time by
setting:

v := v1(k− µ)− v1(k)

β = diag(β1, . . . ,βn) := β (k)

F := Fc(k).

(19)

Using the proposed notation, (16) can be written as:

(v−β F)T (v−β F) = vT v− 2vT β F +FT β T β F (20)

By some simple rearrangements we can write:

2vT β F = 2v1β1F1 + · · ·+ 2vnβnFn =

(

2v1F1 · · · 2vnFn

)

⎛

⎜

⎝

β1

...
βn

⎞

⎟

⎠

FT β T β F = F2
1 β 2

1 + · · ·+F2
n β 2

n =

(

β1 · · · βn

)

⎛

⎜

⎜

⎝

F2
1 0 · · · 0

0 F2
2 · · · 0

· · · · · · · · · · · ·
0 0 · · · F2

n

⎞

⎟

⎟

⎠

⎛

⎜

⎝

β1

...
βn

⎞

⎟

⎠

(21)

The constraint in (17) can be rewritten as:

(

F2
1 ∆T · · · F2

n ∆T
)

⎛

⎜

⎝

β1

...
βn

⎞

⎟

⎠
= Ēobs(m) (22)

Thus, by setting:

x =

⎛

⎜

⎝

β1

...
βn

⎞

⎟

⎠
P = 2

⎛

⎜

⎜

⎜

⎜

⎝

F2
1 0 · · · 0

0 F2
2 · · · 0

· · · · · · · · · · · ·
0 0 · · · F2

n

⎞

⎟

⎟

⎟

⎟

⎠

qT =
(

2v1F1 · · · 2vnFn

)

r = vT v

AT =
(

F2
1 ∆T · · · F2

n ∆T
)

b = Ēobs(m)
(23)

we can rewrite (16) as a standard quadratic optimization
problem:

min
x

1
2 xT Px+ qT x+ r

AT x = b.

(24)

For (24), the Karush-Kuhn-Tucker (KKT) conditions are
both necessary and sufficient [21] and they require that:

(

P A

AT 0

)(

x⋆

λ ⋆

)

=

(

−q

b

)

(25)

where x⋆ are the primal solutions, that is, the optimal solution
for the damping coefficients required and λ ⋆ is the dual
solutions of (24). If A has full rank and P is symmetric
and positive definite, then (25) admits only one solution [21]
given by:

(

x⋆

λ ⋆

)

=

(

P A

AT 0

)−1(
−q

b

)

(26)

This property is very appealing from a computational point of
view but it is necessary to verify if the required assumptions
are always satisfied in our case. From (23) we can see that AT

is a row matrix. The only case in which A has not full rank
is when all the components of the force Fc are zero. This can
happen only when the robot does not move since Fc considers
also the dynamics of the robot. In this case no energy can
be produced and no damping is necessary. From (23) we can
see that P is a diagonal matrix. If all the components of the
control force are different from 0 then P > 0. In case Fi = 0
for some i = 1, . . . ,n, then the corresponding elements on the
diagonal of P are zero and, consequently, P becomes positive
semidefinite. Nevertheless, if Fi = 0 no dissipation can be
done along the ith component and the corresponding term on
the function to minimize is zero. Thus, it is possible to safely
set βi = 0. In order to determine the other components of β
a reduced minimization problem, where only the non zero
components of F are considered, can be built out of (24).
It is easy to see that the A and P matrices of the reduced
problem satisfy the assumptions required for having a unique
solution.

We can formulate the damping matrix selection problem as
the following optimization problem:

min
β (k)

∥v1(k− µ)−β (k)Fc(k)− v1(k)∥
2 (16)

where the the following inequality constraint has to be
satisfied:

∑m
k=0 Fc(k)T β (k)Fc(k)∆T = Ēobs(m) (17)

where

Ēobs(m) =

⎧

⎨

⎩

0 if Eobs(m)≥ 0

−Eobs(m) if Eobs(m)< 0.
(18)

The function to be minimized f (β (k)) = ∥v1(k − µ) −
β (k)Fc(k)− v1(k)∥2 is convex with respect to βi(k) (the
variables to be optimized) and the Hessian of f (β ) is positive
semi-definite. Thus (16) is a convex optimization problem
and, therefore, it is suitable to be solved in real-time. The
minimization problem forces a choice of β (k) such that the
energy produced because of the delay is dissipated and the
velocity transmitted to the robot is as close as possible to
the ideal target velocity.
Notice that we have not set any constraint on the sign
of the elements on the diagonal of β (k) and, therefore,
it may happen that β (k) is not positive definite. Such a
choice does not prevent from achieving passivity since all
the produced energy keeps on being dissipated. Furthermore,
the elimination of the positivity constraint on the βi terms
provides with a greater flexibility in the choice of the mul-
tidimensional damper and, in principle, to a better solution
for the minimization problem. It is possible to reformulate
(16) as a quadratic problem. For ease of notation, we group
the velocity terms and we omit the dependency on time by
setting:

v := v1(k− µ)− v1(k)

β = diag(β1, . . . ,βn) := β (k)

F := Fc(k).

(19)

Using the proposed notation, (16) can be written as:

(v−β F)T (v−β F) = vT v− 2vT β F +FT β T β F (20)

By some simple rearrangements we can write:

2vT β F = 2v1β1F1 + · · ·+ 2vnβnFn =

(

2v1F1 · · · 2vnFn

)

⎛

⎜

⎝

β1

...
βn

⎞

⎟

⎠

FT β T β F = F2
1 β 2

1 + · · ·+F2
n β 2

n =

(

β1 · · · βn

)

⎛

⎜

⎜

⎝

F2
1 0 · · · 0

0 F2
2 · · · 0

· · · · · · · · · · · ·
0 0 · · · F2

n

⎞

⎟

⎟

⎠

⎛

⎜

⎝

β1

...
βn

⎞

⎟

⎠

(21)

The constraint in (17) can be rewritten as:

(

F2
1 ∆T · · · F2

n ∆T
)

⎛

⎜

⎝

β1

...
βn

⎞

⎟

⎠
= Ēobs(m) (22)

Thus, by setting:

x =

⎛

⎜

⎝

β1

...
βn

⎞

⎟

⎠
P = 2

⎛

⎜

⎜

⎜

⎜

⎝

F2
1 0 · · · 0

0 F2
2 · · · 0

· · · · · · · · · · · ·
0 0 · · · F2

n

⎞

⎟

⎟

⎟

⎟

⎠

qT =
(

2v1F1 · · · 2vnFn

)

r = vT v

AT =
(

F2
1 ∆T · · · F2

n ∆T
)

b = Ēobs(m)
(23)

we can rewrite (16) as a standard quadratic optimization
problem:

min
x

1
2 xT Px+ qT x+ r

AT x = b.

(24)

For (24), the Karush-Kuhn-Tucker (KKT) conditions are
both necessary and sufficient [21] and they require that:

(

P A

AT 0

)(

x⋆

λ ⋆

)

=

(

−q

b

)

(25)

where x⋆ are the primal solutions, that is, the optimal solution
for the damping coefficients required and λ ⋆ is the dual
solutions of (24). If A has full rank and P is symmetric
and positive definite, then (25) admits only one solution [21]
given by:

(

x⋆

λ ⋆

)

=

(

P A

AT 0

)−1(
−q

b

)

(26)

This property is very appealing from a computational point of
view but it is necessary to verify if the required assumptions
are always satisfied in our case. From (23) we can see that AT

is a row matrix. The only case in which A has not full rank
is when all the components of the force Fc are zero. This can
happen only when the robot does not move since Fc considers
also the dynamics of the robot. In this case no energy can
be produced and no damping is necessary. From (23) we can
see that P is a diagonal matrix. If all the components of the
control force are different from 0 then P > 0. In case Fi = 0
for some i = 1, . . . ,n, then the corresponding elements on the
diagonal of P are zero and, consequently, P becomes positive
semidefinite. Nevertheless, if Fi = 0 no dissipation can be
done along the ith component and the corresponding term on
the function to minimize is zero. Thus, it is possible to safely
set βi = 0. In order to determine the other components of β
a reduced minimization problem, where only the non zero
components of F are considered, can be built out of (24).
It is easy to see that the A and P matrices of the reduced
problem satisfy the assumptions required for having a unique
solution.
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The damping matrix selection is formulated in the following
optimization problem:

min
β (k)

∥v1(k− µ)−β (k)Fc(k)− v1(k)∥
2, (16)

where the following equality constraint needs to be satisfied:

∑m
k=0 Fc(k)T β (k)Fc(k)∆T = Ēobs(m), (17)

where

Ēobs(m) =

⎧

⎨

⎩

0 if Eobs(m)≥ 0

−Eobs(m) if Eobs(m)< 0.
(18)

The function to be minimized f (β (k)) = ∥v1(k − µ) −
β (k)Fc(k)− v1(k)∥2 is convex with respect to βi(k) (the
variables to be optimized) and the Hessian of f (β ) is positive
semi-definite. Thus (16) is a convex optimization problem
and, therefore, it is suitable to be solved in real-time. The
minimization problem forces a choice of β (k) such that the
energy produced by the delay is dissipated and the velocity
transmitted to the robot is as close as possible to the ideal
target velocity.
Notice that no constraint has been set on the sign of the
elements on the diagonal of β (k) and, therefore, it may
happen that β (k) is not positive definite. Such a choice
does not prevent from achieving passivity since all the
produced energy continues to be dissipated. Furthermore,
the elimination of the positivity constraint on the βi terms
provides a greater flexibility in the choice of the multidimen-
sional damper and, in principle, to a better solution for the
minimization problem. It is possible to reformulate eq. (16)
as a quadratic problem. For ease of notation, the velocity
terms are grouped and the time dependency is omitted by
setting:

v := v1(k− µ)− v1(k)

β = diag(β1, . . . ,βn) := β (k)

F := Fc(k).

(19)

Using the proposed notation, (16) can be written as:

(v−β F)T (v−β F) = vT v− 2vT β F +FT β T β F. (20)

By some simple rearrangements we can write:

2vT β F = 2v1β1F1 + · · ·+ 2vnβnFn =

(

2v1F1 · · · 2vnFn

)

⎛

⎜

⎝

β1

...
βn

⎞

⎟

⎠

FT β T β F = F2
1 β 2

1 + · · ·+F2
n β 2

n =

(

β1 · · · βn

)

⎛

⎜

⎜

⎝

F2
1 0 · · · 0

0 F2
2 · · · 0

· · · · · · · · · · · ·
0 0 · · · F2

n

⎞

⎟

⎟

⎠

⎛

⎜

⎝

β1

...
βn

⎞

⎟

⎠
.

(21)

The constraint in (17) can be rewritten as:

(

F2
1 ∆T · · · F2

n ∆T
)

⎛

⎜

⎝

β1

...
βn

⎞

⎟

⎠
= Ēobs(m). (22)

Thus, by setting:

x =

⎛

⎜

⎝

β1

...
βn

⎞

⎟

⎠
P = 2

⎛

⎜

⎜

⎜

⎜

⎝

F2
1 0 · · · 0

0 F2
2 · · · 0

· · · · · · · · · · · ·
0 0 · · · F2

n

⎞

⎟

⎟

⎟

⎟

⎠

,

qT =
(

2v1F1 · · · 2vnFn

)

r = vT v,

AT =
(

F2
1 ∆T · · · F2

n ∆T
)

b = Ēobs(m),
(23)

eq. (16) can be rewritten as a standard quadratic optimization
problem:

min
x

1
2 xT Px+ qT x+ r

AT x = b.

(24)

For (24), the Karush-Kuhn-Tucker (KKT) conditions are both
necessary and sufficient [22] and they require that:

(

P A

AT 0

)(

x⋆

λ ⋆

)

=

(

−q

b

)

, (25)

where x⋆ are the primal solutions, that is, the optimal solution
for the damping coefficients required and λ ⋆ is the dual
solutions of (24). If A has full rank and P is symmetric
and positive definite, then (25) admits only one solution [22]
given by:

(

x⋆

λ ⋆

)

=

(

P A

AT 0

)−1(
−q

b

)

. (26)

This property is very appealing from a computational point of
view but it is necessary to verify if the required assumptions
are always satisfied for the given case. From (23) we can
see that AT is a row matrix. The only case in which A has
not full rank is when all the components of the force Fc

are zero. This can happen only when the robot does not
move since Fc considers also the dynamics of the robot.
In this case no energy can be produced and no damping
is necessary. From (23) we can see that P is a diagonal
matrix. If all the components of the control force are different
from 0 then P > 0. In case Fi = 0 for some i = 1, . . . ,n,
then the corresponding elements on the diagonal of P are
zero and, consequently, P becomes positive semi-definite.
Nevertheless, if Fi = 0 no dissipation occurs along the ith

component and the corresponding term on the function to
minimize is zero. Thus, it is possible to safely set βi = 0.
In order to determine the other components of β a reduced
minimization problem, where only the non-zero components
of F are considered, can be built out of (24). It is easy to
see that the A and P matrices of the reduced problem satisfy
the assumptions required for having a unique solution.
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The damping matrix selection is formulated in the following
optimization problem:

min
β (k)

∥v1(k− µ)−β (k)Fc(k)− v1(k)∥
2, (16)

where the following equality constraint needs to be satisfied:

∑m
k=0 Fc(k)T β (k)Fc(k)∆T = Ēobs(m), (17)

where

Ēobs(m) =

⎧

⎨

⎩

0 if Eobs(m)≥ 0

−Eobs(m) if Eobs(m)< 0.
(18)

The function to be minimized f (β (k)) = ∥v1(k − µ) −
β (k)Fc(k)− v1(k)∥2 is convex with respect to βi(k) (the
variables to be optimized) and the Hessian of f (β ) is positive
semi-definite. Thus (16) is a convex optimization problem
and, therefore, it is suitable to be solved in real-time. The
minimization problem forces a choice of β (k) such that the
energy produced by the delay is dissipated and the velocity
transmitted to the robot is as close as possible to the ideal
target velocity.
Notice that no constraint has been set on the sign of the
elements on the diagonal of β (k) and, therefore, it may
happen that β (k) is not positive definite. Such a choice
does not prevent from achieving passivity since all the
produced energy continues to be dissipated. Furthermore,
the elimination of the positivity constraint on the βi terms
provides a greater flexibility in the choice of the multidimen-
sional damper and, in principle, to a better solution for the
minimization problem. It is possible to reformulate eq. (16)
as a quadratic problem. For ease of notation, the velocity
terms are grouped and the time dependency is omitted by
setting:

v := v1(k− µ)− v1(k)

β = diag(β1, . . . ,βn) := β (k)

F := Fc(k).

(19)

Using the proposed notation, (16) can be written as:

(v−β F)T (v−β F) = vT v− 2vT β F +FT β T β F. (20)

By some simple rearrangements we can write:

2vT β F = 2v1β1F1 + · · ·+ 2vnβnFn =

(

2v1F1 · · · 2vnFn

)

⎛

⎜

⎝

β1

...
βn

⎞

⎟

⎠

FT β T β F = F2
1 β 2

1 + · · ·+F2
n β 2

n =

(

β1 · · · βn

)

⎛

⎜

⎜

⎝

F2
1 0 · · · 0

0 F2
2 · · · 0

· · · · · · · · · · · ·
0 0 · · · F2

n

⎞

⎟

⎟

⎠

⎛

⎜

⎝

β1

...
βn

⎞

⎟

⎠
.

(21)

The constraint in (17) can be rewritten as:

(

F2
1 ∆T · · · F2

n ∆T
)

⎛

⎜

⎝

β1

...
βn

⎞

⎟

⎠
= Ēobs(m). (22)

Thus, by setting:

x =

⎛

⎜

⎝

β1

...
βn

⎞

⎟

⎠
P = 2

⎛

⎜

⎜

⎜

⎜

⎝

F2
1 0 · · · 0

0 F2
2 · · · 0

· · · · · · · · · · · ·
0 0 · · · F2

n

⎞

⎟

⎟

⎟

⎟

⎠

,

qT =
(

2v1F1 · · · 2vnFn

)

r = vT v,

AT =
(

F2
1 ∆T · · · F2

n ∆T
)

b = Ēobs(m),
(23)

eq. (16) can be rewritten as a standard quadratic optimization
problem:

min
x

1
2 xT Px+ qT x+ r

AT x = b.

(24)

For (24), the Karush-Kuhn-Tucker (KKT) conditions are both
necessary and sufficient [22] and they require that:

(

P A

AT 0

)(

x⋆

λ ⋆

)

=

(

−q

b

)

, (25)

where x⋆ are the primal solutions, that is, the optimal solution
for the damping coefficients required and λ ⋆ is the dual
solutions of (24). If A has full rank and P is symmetric
and positive definite, then (25) admits only one solution [22]
given by:

(

x⋆

λ ⋆

)

=

(

P A

AT 0

)−1(
−q

b

)

. (26)

This property is very appealing from a computational point of
view but it is necessary to verify if the required assumptions
are always satisfied for the given case. From (23) we can
see that AT is a row matrix. The only case in which A has
not full rank is when all the components of the force Fc

are zero. This can happen only when the robot does not
move since Fc considers also the dynamics of the robot.
In this case no energy can be produced and no damping
is necessary. From (23) we can see that P is a diagonal
matrix. If all the components of the control force are different
from 0 then P > 0. In case Fi = 0 for some i = 1, . . . ,n,
then the corresponding elements on the diagonal of P are
zero and, consequently, P becomes positive semi-definite.
Nevertheless, if Fi = 0 no dissipation occurs along the ith

component and the corresponding term on the function to
minimize is zero. Thus, it is possible to safely set βi = 0.
In order to determine the other components of β a reduced
minimization problem, where only the non-zero components
of F are considered, can be built out of (24). It is easy to
see that the A and P matrices of the reduced problem satisfy
the assumptions required for having a unique solution.
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Time Delay: Experiment Results 
 
•  The observed active energy is dissipated with the optimal damping and the system results 

to be stable. 
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VI. CONCLUSION AND FUTURE WORKS

The results obtained from the optimized virtual dynamics
rendered on a position controlled robot are promising in both,
simulation and experiments. We show that ensuring stability
is not enough to fulfill performance oriented goals. Never-
theless, formulating the damping of the passivity controller
as an optimization problem also shows that these goals do
not necessary clash with the stability primary objective. One
possible limiting factor of the presented approach is given
by the fact that the energy exchange function in (7) that
results from the two-port TDPN assumes observability of the
controller force Fc. The proposed forces estimator requires
well identified dynamics of the robot in order to minimize
the uncertainties on the observation of the energy exchange.
Future work aims at extending the proposed control strategy
for addressing other factors from the discretization process
that result in distortion of the rendered virtual dynamics. In

0 5 10 15 20 25 30 35 40 45

−0.15
−0.1
−0.05

0
[J

]

 

 
Observed Energy

0 5 10 15 20 25 30 35 40 45
0

0.05
0.1

0.15

[J
]

 

 

Energy of the Passivity controller

0 5 10 15 20 25 30 35 40 45

−5
0
5

10
x 10−5

time [s]

[J
]

 

 

Net Energy: Passivity proof

Fig. 10: Experimental results: Observed energy, energy due
to the passivity control with the optimal solution and passiv-
ity proof
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Fig. 11: Experimental results: Optimal velocity correction
and forces estimated

particular, special attention shall be placed on the drifts that
may occur due to the numeral integration for computing the
desired dynamics.
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3. Factor that affect the free-floating dynamics simulation on a robot 
 
4. Reproducing free-floating dynamics: An Energy-based approach 

 
 

 
Time delay  

•  Time delay between measured force-torque and command to the robot  
     causes system instability  

•  Virtual energy is generated due to intrinsic latencies 
 
 
 
Discretization 

•  Standard Euler Integrator leads to generation of energy and position drifts  
 
•  Implicit integration methods require a numerical and iterative solution, 
 
•  Iterative solutions can be prohibitive for real-time determinism. 
 

 

Reproducing free-floating dynamics with Robotic Facilities  
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Discretization 

a dynamics subject to external forces, lead to a generation of
energy and, therefore, to non-physical dynamics and to large
drifts. This undesired behavior becomes more evident for
large sample times, which is a common situation in industrial
robots, where the control frequency is usually low.
Several geometric integrators for physical systems, i.e. nu-
merical integration methods that preserve energy and/or other
geometric quantities (e.g. symplectic structure), have been
developed over the years [10], [11], [12]. Some energy-
preserving integrators are also available in the literature (e.g.
the energy momentum method [13]). Nevertheless, geometric
integration deals mainly with isolated physical systems (e.g.
galaxies or other astronomical system), or with systems with
some damping [14], and the interaction with the external
environment is not considered.
In haptics, where an operator has to interact with a virtual
environment, the problem of passively (i.e. while preserving
its energetic properties) integrating a non-isolated physical
dynamics is relevant. In [15], it is shown that standard ex-
plicit integrators do not ensure passivity and that, therefore, a
more complex (and harder to implement) integration strategy
has to be sought. In [16], an implicit integration method,
based on the port-Hamiltonian formulation of the dynamics
to simulate, has been proposed and in [17], a fast but implicit
and variable rate integration strategy for implementing mass-
spring-damper systems is illustrated.
Implicit and variable rate integration methods can be cum-
bersome to implement on a standard industrial robot.

B. Contribution

Current implicit integration methods require a numerical
and iterative solution of the updated equation for each time
step, which typically prohibits real-time determinism. Thus,
we aim at developing an explicit integrator starting from the
standard Euler method by adjusting the output for meeting
the passivity constraint. Specifically, we will implement a
rigid body dynamics using the discrete Euler integration
method; we identify the energy produced and then we will
keep track of it at each integration step. The integrated value
will be further updated in order to dissipate the produced
energy and to make the overall system a passive integrator. In
order to modulate the output of the integrator, we will exploit
the Time Domain Passivity Approach (TDPA) proposed in
[18] and widely used in haptics for damping out the excess
energy produced by the virtual environment. Recently, TDPA
has been exploited for increasing the impedance that can be
rendered by admittance-type haptic interfaces [19]. In our
work we will combine the TDPA with the Euler integration
for getting a simple and controlled explicit passive integrator.
Therefore, the main contribution of the paper is twofold.
First, we develop a new controlled explicit integrator that
allows to reproduce the passive behavior of a rigid body
dynamics independently of the discrete-system sampling
time. Such an integrator can be easily implemented in stan-
dard industrial robots. Second, we show that the proposed
integrator allows to achieve the desired performance on a
real satellite simulator, the OOS-SIM in Fig. 1.

The paper is organized as follows: Sec. II introduces the
dynamics we aim at simulating and states the problem due
to the discretization. In Sec. III the energy term, which
causes the energy drift, is identified and the passive explicit
integrator is presented. Simulation results are discussed in
Sec. IV with a real application on an industrial robot pro-
posed in Sec. V. Conclusions and future works are discussed
in Sec. VI.

II. PROBLEM STATEMENT

The architecture of a generic robotic simulator is illus-
trated in Fig. 2. F(k) represents the total wrench applied
to the end effector of the robot (i.e. to the object to be
simulated) during the interaction with the environment. The
wrench is provided as an input to the desired dynamics (in
the dashed box) where the acceleration is computed and
discretely integrated with a sample time T . Thus, it will
provide the twist v(k) as a set-point to the robot which
will consequently reproduce the desired behavior. We will
assume that the robot can perfectly track the desired set-
point. This is a common assumption with industrial robots
and it can be achieved by properly tuning the gains of the low
level controllers. In particular, in this paper, we will consider
only the Cartesian dynamics. Thus, the desired dynamics is
defined to be:

Mv̇ = F, (1)

where M = diag(mi) ∈ R3×3 is the desired virtual mass
which we want to simulate. F∈R3 is the force applied to the
robot during its interaction with the environment and v ∈R3

is the Cartesian velocity of the end-effector. Moreover, Let
H = 1

2 pT M−1p be the kinetic energy of the system (1),
where p = Mv ∈ R3 is the momentum. The dynamics can
be reformulated in a port-Hamiltonian form as:

(

v
ṗ

)

=

(

0 I
−I 0

)
(

∂H
∂x
∂H
∂p

)

+

(

0
I

)

F, (2)

where x∈R3 represents the Cartesian configuration and ẋ =
v. 0, I ∈R3×3 are the null and the identity matrix respectively.
As for any port-Hamiltonian system without damping, we
have that the following balance holds [9]:

Ḣ = FT M−1p = FT v, (3)

which represents the fundamental energetic property of any
undamped mechanical system, namely that the power due to
the interaction with the environment is energetically stored in

F(k)
Des. Dyn. T ∑

v̇(k)
R

v(k)
E

Fig. 2: Admittance architecture with the desired dynamic -
R is the robot, E is the environment, Des. Dyn. is the force-
acceleration model of the dynamics to implement, T Σ is the
discrete integrator with time step T .

•  Admittance architecture of the robot simulator:  

 
 
 
•  The desired dynamics is subjected to external forces, 

•  Explicit and Discrete Integrator strategy by modifying the output of the Euler integrator. 

 

Sim.Dyn 

where the discrete dynamics has been considered. By simply
reordering the terms we obtain:

H(k) =
1
2

p(k− 1)T M−1p(k− 1)+Tv(k− 1)T F(k− 1)

+
1
2

T 2F(k− 1)T M−1F(k− 1), (8)

where v(k− 1) = M−1p(k− 1). We can then write:

H(k) = H(k− 1)+Tv(k− 1)T F(k− 1)

+
1
2

T 2F(k− 1)T M−1F(k− 1)
︸ ︷︷ ︸

∆H

(9)

which is not a physical and passive behavior. In fact, the
energy variation should be due only to the energy provided
through the power port, i.e. v(k− 1)TF(k− 1)T , and the
extra energy term ∆H = 1

2 T 2F(k− 1)T M−1F(k− 1) is just
due to Euler integration.
This causes two main problems. First, as shown in Sec. II,
the extra energy will cause a drift that makes the reproduced
dynamics drifting with respect to the ideal one. Second, as
evident from (9), the discrete dynamics is not passive and,
therefore, it may happen that during the interaction with the
environment, the system becomes unstable [9].
In order to simplify the presentation, since the desired
dynamics (1) is decoupled, in the following analysis and
in the design of the explicit passive integration scheme we
will consider a single component. Thus, we will remove the
bold notation, that has characterized vectors and matrices
so far, and with a regular font we will indicate the generic
ith component of the vectors involved in the analysis. For
example, the extra energy term ∆H corresponding to the ith

component in (9) will be written as:

∆H =
T 2F(k− 1)2

2m
. (10)

B. Relation between the continuous and the discrete dynam-
ics

In this subsection, we aim at understanding how accurate is
∆H, which can be computed in real time and that will be used
for adjusting the output velocity of the Euler integrator (6).
It is as an estimate of the energy produced when discretizing
the continuous dynamics, namely of the difference between
the discrete energy (Ed) and the continuous energy (Ec).
We consider the dynamics in (1) where a discrete force
input F(k) is commanded to the mass m and its velocity is
derived using both continuous and discrete integration. The
difference between energy increments of the dynamic system
in one sampling cycle between the two integration methods
is ∆E = Ed − Ec. The analytical value of the additional
energy due to discrete integration ∆H is also calculated in the
simulation. Fig. 5 shows the difference between ∆E and ∆H
for different sampling rates. It can be seen that the difference
is small and it tends to zero as the sampling time tends to
zero.
The reason for the difference between ∆E and ∆H is an-
alyzed here. A graphical representation of the power plots
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Fig. 5: Difference between analytical and identified values
of additional energy: T1 = 0.1s, T2 = 0.01s, T3 = 0.001s.

for both continuous (dashed curve) and discrete (samples)
dynamic systems are shown in Fig. 6. The difference between
the energy increase per sampling cycle in both the systems is
analyzed in the lower figures (positive, increasing power in
A and negative, decreasing power in B). In part A of Fig.6,
the power of the continuous system varies linearly between
the samples k−1 and k from P(t−T ) to P(t) since the input
force F(k− 1) is constant during this time. The area of the
shaded regions (quadrilateral acde) is the extra energy ∆E
in the sampling time T produced by the discrete system than
the continuous one. This area is the sum of the areas of the
rectangle abde and the triangle bcd. If Area(Q) function is
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Fig. 6: Power difference between discrete and continuous
time domains.



Discretization: Problem Statement 

the system. Notice that if there is not interaction (i.e. F= 0),
then the energy stored in the system is constant (i.e. Ḣ = 0).
The model (2) can be rewritten as:

⎧

⎨

⎩

v = M−1p

ṗ = F.
(4)

Integrating the desired dynamics using the standard Euler
method leads to the following discrete system:

⎧

⎨

⎩

x(k) = x(k− 1)+TM−1p(k)

p(k) = p(k− 1)+TF(k− 1),
(5)

where the second line is equivalent to the following velocity
integration strategy:

v(k) = v(k− 1)+TM−1F(k− 1), (6)

In case of free motion (i.e. F(k− 1) = 0), the momentum
and, consequently, the energy of the system are constant over
time. Thus, in this very simple case, straight Euler integration
is energetically well posed since it allows the discretized
dynamics to behave physically independently of the sample
time.
Unfortunately this well posedness does not hold anymore
in case of interaction. This can be easily shown by a 1-
DOF example. Consider the force profile, shown at the top
of Fig. 3, which acts on a mass of 30 kg. The integration
of the dynamics is considered in the continuous case and
compared with the Euler discrete integrator for sampling
time: T1 = 0.1 s, T2 = 0.01 s. Fig. 4 clearly shows the
increase in the energy which is introduced into the system
with respect to the continuous time integrator (Hc is the
energy calculated in continuous time). Notice that the larger
the sampling time, the larger is the increase of energy which
leads to a drift in the position. The drift due to the integration
with T1 reaches 0.05 m (when the force profile acts between
0s and 32s) and 0.15 m between 32 s and 50 s, (see Fig. 3
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Fig. 3: Force profile, drift in position due to the discretization
with (w) T1 and T2.
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Fig. 4: Problem statement: mechanical energy considering
different sampling time (HT1 and HT2 ) and comparison with
the continuous case Hc.

middle). Also for the case with T2, the drift appears. Since the
sampling time is smaller, it results in a drift 10 times lower,
as shown in Fig. 3 bottom. This drift causes inconsistency
in simulating the desired dynamics with a discrete integrator
that is usually implemented for rendering a desired dynamics
with a robot. The robot will receive position commands
accordingly but, as it has been shown, the energy properties
of the simulated mass will be not preserved. Such a drift may
lead the robot to interact to unforeseen objects that produce
new (drifted) behaviors leading to a deteriorated performance
of the system.
The goal of this work is to design a controlled Euler integra-
tion method that preserves the energetic balance in (3) in the
discrete case. In this way, it will be possible to reproduce by
the robotic simulator the behavior (1) while preserving its
energetic properties independently of the sample time.

III. THE PASSIVITY-BASED INTEGRATION METHOD

As shown in Sec. II, the extra energy due to the discrete in-
tegration makes the energy behavior of the discrete dynamic
system different from that of its continuous counterpart.
In this section, we formally identify the extra energy intro-
duced by the discrete integrator and we exploit this informa-
tion for adjusting the velocity output of the Euler integrator
using the TDPA. An analysis of the energy behavior of the
continuous and discrete time systems is presented and the
passivity-based integrator scheme is introduced.

A. Energy produced by the Euler integration method

Consider the dynamics (1) discretized by means of the
Euler method and reported in (5). The discrete kinetic energy
H(k) is given by:

H(k) =
1
2

p(k)T M−1p(k) =

1
2
[p(k− 1)+TF(k− 1)]T M−1[p(k− 1)+TF(k− 1)], (7)

the system. Notice that if there is not interaction (i.e. F= 0),
then the energy stored in the system is constant (i.e. Ḣ = 0).
The model (2) can be rewritten as:

⎧

⎨

⎩

v = M−1p

ṗ = F.
(4)

Integrating the desired dynamics using the standard Euler
method leads to the following discrete system:

⎧

⎨

⎩

x(k) = x(k− 1)+TM−1p(k)

p(k) = p(k− 1)+TF(k− 1),
(5)

where the second line is equivalent to the following velocity
integration strategy:

v(k) = v(k− 1)+TM−1F(k− 1), (6)

In case of free motion (i.e. F(k− 1) = 0), the momentum
and, consequently, the energy of the system are constant over
time. Thus, in this very simple case, straight Euler integration
is energetically well posed since it allows the discretized
dynamics to behave physically independently of the sample
time.
Unfortunately this well posedness does not hold anymore
in case of interaction. This can be easily shown by a 1-
DOF example. Consider the force profile, shown at the top
of Fig. 3, which acts on a mass of 30 kg. The integration
of the dynamics is considered in the continuous case and
compared with the Euler discrete integrator for sampling
time: T1 = 0.1 s, T2 = 0.01 s. Fig. 4 clearly shows the
increase in the energy which is introduced into the system
with respect to the continuous time integrator (Hc is the
energy calculated in continuous time). Notice that the larger
the sampling time, the larger is the increase of energy which
leads to a drift in the position. The drift due to the integration
with T1 reaches 0.05 m (when the force profile acts between
0s and 32s) and 0.15 m between 32 s and 50 s, (see Fig. 3
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middle). Also for the case with T2, the drift appears. Since the
sampling time is smaller, it results in a drift 10 times lower,
as shown in Fig. 3 bottom. This drift causes inconsistency
in simulating the desired dynamics with a discrete integrator
that is usually implemented for rendering a desired dynamics
with a robot. The robot will receive position commands
accordingly but, as it has been shown, the energy properties
of the simulated mass will be not preserved. Such a drift may
lead the robot to interact to unforeseen objects that produce
new (drifted) behaviors leading to a deteriorated performance
of the system.
The goal of this work is to design a controlled Euler integra-
tion method that preserves the energetic balance in (3) in the
discrete case. In this way, it will be possible to reproduce by
the robotic simulator the behavior (1) while preserving its
energetic properties independently of the sample time.

III. THE PASSIVITY-BASED INTEGRATION METHOD

As shown in Sec. II, the extra energy due to the discrete in-
tegration makes the energy behavior of the discrete dynamic
system different from that of its continuous counterpart.
In this section, we formally identify the extra energy intro-
duced by the discrete integrator and we exploit this informa-
tion for adjusting the velocity output of the Euler integrator
using the TDPA. An analysis of the energy behavior of the
continuous and discrete time systems is presented and the
passivity-based integrator scheme is introduced.

A. Energy produced by the Euler integration method

Consider the dynamics (1) discretized by means of the
Euler method and reported in (5). The discrete kinetic energy
H(k) is given by:

H(k) =
1
2

p(k)T M−1p(k) =

1
2
[p(k− 1)+TF(k− 1)]T M−1[p(k− 1)+TF(k− 1)], (7)

a dynamics subject to external forces, lead to a generation of
energy and, therefore, to non-physical dynamics and to large
drifts. This undesired behavior becomes more evident for
large sample times, which is a common situation in industrial
robots, where the control frequency is usually low.
Several geometric integrators for physical systems, i.e. nu-
merical integration methods that preserve energy and/or other
geometric quantities (e.g. symplectic structure), have been
developed over the years [10], [11], [12]. Some energy-
preserving integrators are also available in the literature (e.g.
the energy momentum method [13]). Nevertheless, geometric
integration deals mainly with isolated physical systems (e.g.
galaxies or other astronomical system), or with systems with
some damping [14], and the interaction with the external
environment is not considered.
In haptics, where an operator has to interact with a virtual
environment, the problem of passively (i.e. while preserving
its energetic properties) integrating a non-isolated physical
dynamics is relevant. In [15], it is shown that standard ex-
plicit integrators do not ensure passivity and that, therefore, a
more complex (and harder to implement) integration strategy
has to be sought. In [16], an implicit integration method,
based on the port-Hamiltonian formulation of the dynamics
to simulate, has been proposed and in [17], a fast but implicit
and variable rate integration strategy for implementing mass-
spring-damper systems is illustrated.
Implicit and variable rate integration methods can be cum-
bersome to implement on a standard industrial robot.

B. Contribution

Current implicit integration methods require a numerical
and iterative solution of the updated equation for each time
step, which typically prohibits real-time determinism. Thus,
we aim at developing an explicit integrator starting from the
standard Euler method by adjusting the output for meeting
the passivity constraint. Specifically, we will implement a
rigid body dynamics using the discrete Euler integration
method; we identify the energy produced and then we will
keep track of it at each integration step. The integrated value
will be further updated in order to dissipate the produced
energy and to make the overall system a passive integrator. In
order to modulate the output of the integrator, we will exploit
the Time Domain Passivity Approach (TDPA) proposed in
[18] and widely used in haptics for damping out the excess
energy produced by the virtual environment. Recently, TDPA
has been exploited for increasing the impedance that can be
rendered by admittance-type haptic interfaces [19]. In our
work we will combine the TDPA with the Euler integration
for getting a simple and controlled explicit passive integrator.
Therefore, the main contribution of the paper is twofold.
First, we develop a new controlled explicit integrator that
allows to reproduce the passive behavior of a rigid body
dynamics independently of the discrete-system sampling
time. Such an integrator can be easily implemented in stan-
dard industrial robots. Second, we show that the proposed
integrator allows to achieve the desired performance on a
real satellite simulator, the OOS-SIM in Fig. 1.

The paper is organized as follows: Sec. II introduces the
dynamics we aim at simulating and states the problem due
to the discretization. In Sec. III the energy term, which
causes the energy drift, is identified and the passive explicit
integrator is presented. Simulation results are discussed in
Sec. IV with a real application on an industrial robot pro-
posed in Sec. V. Conclusions and future works are discussed
in Sec. VI.

II. PROBLEM STATEMENT

The architecture of a generic robotic simulator is illus-
trated in Fig. 2. F(k) represents the total wrench applied
to the end effector of the robot (i.e. to the object to be
simulated) during the interaction with the environment. The
wrench is provided as an input to the desired dynamics (in
the dashed box) where the acceleration is computed and
discretely integrated with a sample time T . Thus, it will
provide the twist v(k) as a set-point to the robot which
will consequently reproduce the desired behavior. We will
assume that the robot can perfectly track the desired set-
point. This is a common assumption with industrial robots
and it can be achieved by properly tuning the gains of the low
level controllers. In particular, in this paper, we will consider
only the Cartesian dynamics. Thus, the desired dynamics is
defined to be:

Mv̇ = F, (1)

where M = diag(mi) ∈ R3×3 is the desired virtual mass
which we want to simulate. F∈R3 is the force applied to the
robot during its interaction with the environment and v ∈R3

is the Cartesian velocity of the end-effector. Moreover, Let
H = 1

2 pT M−1p be the kinetic energy of the system (1),
where p = Mv ∈ R3 is the momentum. The dynamics can
be reformulated in a port-Hamiltonian form as:

(

v
ṗ

)

=

(

0 I
−I 0

)
(

∂H
∂x
∂H
∂p

)

+

(

0
I

)

F, (2)

where x∈R3 represents the Cartesian configuration and ẋ =
v. 0, I ∈R3×3 are the null and the identity matrix respectively.
As for any port-Hamiltonian system without damping, we
have that the following balance holds [9]:

Ḣ = FT M−1p = FT v, (3)

which represents the fundamental energetic property of any
undamped mechanical system, namely that the power due to
the interaction with the environment is energetically stored in

F(k)
Des. Dyn. T ∑

v̇(k)
R

v(k)
E

Fig. 2: Admittance architecture with the desired dynamic -
R is the robot, E is the environment, Des. Dyn. is the force-
acceleration model of the dynamics to implement, T Σ is the
discrete integrator with time step T .

Energy drift for different sampling time and 
comparison with the continuous case Hc.  

Force profile, drift in position due to the 
discretization with different sampling time   

•  Considering the Hamiltonian system: 
 

•  Standard Euler method causes drift in position and energy inconsistency  
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Energy produced by the Euler Integrator 

 
•  The energy variation should be due only to the energy provided through the 

port (F,v), 

 
•  The Energy due to Euler method is:  

 

•       is the active energy introduced at each time step T, 

•  The active energy will cause  a non-physical and a non-passive behaviour. 

where the discrete dynamics has been considered. By simply
reordering the terms we obtain:

H(k) =
1
2

p(k− 1)T M−1p(k− 1)+Tv(k− 1)T F(k− 1)

+
1
2

T 2F(k− 1)T M−1F(k− 1), (8)

where v(k− 1) = M−1p(k− 1). We can then write:

H(k) = H(k− 1)+Tv(k− 1)T F(k− 1)

+
1
2

T 2F(k− 1)T M−1F(k− 1)
︸ ︷︷ ︸

∆H

(9)

which is not a physical and passive behavior. In fact, the
energy variation should be due only to the energy provided
through the power port, i.e. v(k− 1)TF(k− 1)T , and the
extra energy term ∆H = 1

2 T 2F(k− 1)T M−1F(k− 1) is just
due to Euler integration.
This causes two main problems. First, as shown in Sec. II,
the extra energy will cause a drift that makes the reproduced
dynamics drifting with respect to the ideal one. Second, as
evident from (9), the discrete dynamics is not passive and,
therefore, it may happen that during the interaction with the
environment, the system becomes unstable [9].
In order to simplify the presentation, since the desired
dynamics (1) is decoupled, in the following analysis and
in the design of the explicit passive integration scheme we
will consider a single component. Thus, we will remove the
bold notation, that has characterized vectors and matrices
so far, and with a regular font we will indicate the generic
ith component of the vectors involved in the analysis. For
example, the extra energy term ∆H corresponding to the ith

component in (9) will be written as:

∆H =
T 2F(k− 1)2

2m
. (10)

B. Relation between the continuous and the discrete dynam-
ics

In this subsection, we aim at understanding how accurate is
∆H, which can be computed in real time and that will be used
for adjusting the output velocity of the Euler integrator (6).
It is as an estimate of the energy produced when discretizing
the continuous dynamics, namely of the difference between
the discrete energy (Ed) and the continuous energy (Ec).
We consider the dynamics in (1) where a discrete force
input F(k) is commanded to the mass m and its velocity is
derived using both continuous and discrete integration. The
difference between energy increments of the dynamic system
in one sampling cycle between the two integration methods
is ∆E = Ed − Ec. The analytical value of the additional
energy due to discrete integration ∆H is also calculated in the
simulation. Fig. 5 shows the difference between ∆E and ∆H
for different sampling rates. It can be seen that the difference
is small and it tends to zero as the sampling time tends to
zero.
The reason for the difference between ∆E and ∆H is an-
alyzed here. A graphical representation of the power plots
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Passivity-based integration scheme 

Thus, if active energy is detected (i.e. Eobs < 0), the corrected
velocity is sent to the robot as follows:

vc(k) =

{

v(k)−β (k)F(k) Eobs < 0
v(k) else.

(19)

where v(k) is achieved by (6). Therefore, the observed energy
will be Eobs(k) ≥ 0 making the network, i.e. the integrator,
passive. A schematic of the integration scheme is in Fig. 8.
The variable damping β is modulated by the observed active
energy and the applied force which will activate the PC (in
(18), (19)) to provide the corrected velocity vc to the robot.
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Fig. 8: The passivity-based integration scheme.

IV. SIMULATIONS

The method is firstly verified in simulation where the
proposed integration scheme is applied. We consider the
same case as in Sec. II (i.e. mass and force profile) for
the same sampling time T1 = 0.1s and T2 = 0.01s. The top
of Fig. 9 shows the active energy observed in the system
running with T1. This leads to a drift in the energy as it has
been described in Sec. II.
However, this active energy is compensated by the PC that
adjusts the velocity (see middle of Fig. 9 for the velocity
corrected by the PC).
Thus, the passivity proof is provided at the bottom of Fig.
9 which shows that the observed energy has always a non-
negative value according to the passivity condition in (14).
A second simulation has been performed for the case with T2
as it is shown in Fig. 10. The active energy is here dissipated
by virtue of the PC and the system results to be passive (see
Fig. 10 bottom).
In order to verify that the mechanical properties are pre-
served, a comparison with the continuous time integrator is
shown in Fig. 11. Hc is the energy calculated in continuous
time and HT 1, HT 2 is the energy calculated as results of
the correction with the proposed method with T1 and T2,
respectively. The energy drift discussed in the problem
statement in Fig. 4 is now corrected as illustrated in Fig. 11.
This proves that the discrete dynamics with the proposed
integration method behaves passively in discrete time and it
preserves the energy properties of the simulated rigid body.

V. EXPERIMENT

The experiment is carried out on an industrial robot which
is part of the OOS-SIM facility [5] and can simulate the
dynamics of a satellite. The robot is equipped with a force
sensor at its end-effector to measure external interaction.
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Fig. 10: Sim. 2 -Eobs without (w/o) PC, velocity corrected
by the PC and Eobs with (w) PC for T2 = 0.01s.

Both, plant and sensor run in real-time with a frequency
of 250 Hz, thus the considered sampling time is 4 ms. The
experiment is performed for the presented dynamics where
the simulated mass is 250 kg, typical value of a satellite.
Fig. 12, Fig. 13 and Fig. 14 show the data along the
components (z,y,x) measured during the experiment. Each
figure shows the energy observed without (w/o) PC, the
energy with (w) PC, the damping coefficient β , the velocity
corrected by the PC, the measured force F and the relative
position of the robot, respectively. As it can be seen, the
Eobs w/o the PC results in a negative energy which can
produce an active behavior. However, this active energy is
corrected by the PC which commands a velocity correction
vpc as a function of the damping coefficient β to preserve
the passivity condition. Indeed, the passivity proof of the
method is described by the energy observed with the PC
in each figure which results to be positive, thus, passive
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same case as in Sec. II (i.e. mass and force profile) for
the same sampling time T1 = 0.1s and T2 = 0.01s. The top
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running with T1. This leads to a drift in the energy as it has
been described in Sec. II.
However, this active energy is compensated by the PC that
adjusts the velocity (see middle of Fig. 9 for the velocity
corrected by the PC).
Thus, the passivity proof is provided at the bottom of Fig.
9 which shows that the observed energy has always a non-
negative value according to the passivity condition in (14).
A second simulation has been performed for the case with T2
as it is shown in Fig. 10. The active energy is here dissipated
by virtue of the PC and the system results to be passive (see
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shown in Fig. 11. Hc is the energy calculated in continuous
time and HT 1, HT 2 is the energy calculated as results of
the correction with the proposed method with T1 and T2,
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Both, plant and sensor run in real-time with a frequency
of 250 Hz, thus the considered sampling time is 4 ms. The
experiment is performed for the presented dynamics where
the simulated mass is 250 kg, typical value of a satellite.
Fig. 12, Fig. 13 and Fig. 14 show the data along the
components (z,y,x) measured during the experiment. Each
figure shows the energy observed without (w/o) PC, the
energy with (w) PC, the damping coefficient β , the velocity
corrected by the PC, the measured force F and the relative
position of the robot, respectively. As it can be seen, the
Eobs w/o the PC results in a negative energy which can
produce an active behavior. However, this active energy is
corrected by the PC which commands a velocity correction
vpc as a function of the damping coefficient β to preserve
the passivity condition. Indeed, the passivity proof of the
method is described by the energy observed with the PC
in each figure which results to be positive, thus, passive

•  The passivity control (PC) corrects the velocity with a variable damper  
•  The energy observer (Eobs) measures the active energy 
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•  The energy observer checks the energy flows: 
 

•  The passivity controller acts in admittance configuration: Thus, if active energy is detected (i.e. Eobs < 0), the corrected
velocity is sent to the robot as follows:

vc(k) =

{

v(k)−β (k)F(k) Eobs < 0
v(k) else.

(19)

where v(k) is achieved by (6). Therefore, the observed energy
will be Eobs(k) ≥ 0 making the network, i.e. the integrator,
passive. A schematic of the integration scheme is in Fig. 8.
The variable damping β is modulated by the observed active
energy and the applied force which will activate the PC (in
(18), (19)) to provide the corrected velocity vc to the robot.
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IV. SIMULATIONS

The method is firstly verified in simulation where the
proposed integration scheme is applied. We consider the
same case as in Sec. II (i.e. mass and force profile) for
the same sampling time T1 = 0.1s and T2 = 0.01s. The top
of Fig. 9 shows the active energy observed in the system
running with T1. This leads to a drift in the energy as it has
been described in Sec. II.
However, this active energy is compensated by the PC that
adjusts the velocity (see middle of Fig. 9 for the velocity
corrected by the PC).
Thus, the passivity proof is provided at the bottom of Fig.
9 which shows that the observed energy has always a non-
negative value according to the passivity condition in (14).
A second simulation has been performed for the case with T2
as it is shown in Fig. 10. The active energy is here dissipated
by virtue of the PC and the system results to be passive (see
Fig. 10 bottom).
In order to verify that the mechanical properties are pre-
served, a comparison with the continuous time integrator is
shown in Fig. 11. Hc is the energy calculated in continuous
time and HT 1, HT 2 is the energy calculated as results of
the correction with the proposed method with T1 and T2,
respectively. The energy drift discussed in the problem
statement in Fig. 4 is now corrected as illustrated in Fig. 11.
This proves that the discrete dynamics with the proposed
integration method behaves passively in discrete time and it
preserves the energy properties of the simulated rigid body.

V. EXPERIMENT

The experiment is carried out on an industrial robot which
is part of the OOS-SIM facility [5] and can simulate the
dynamics of a satellite. The robot is equipped with a force
sensor at its end-effector to measure external interaction.
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Both, plant and sensor run in real-time with a frequency
of 250 Hz, thus the considered sampling time is 4 ms. The
experiment is performed for the presented dynamics where
the simulated mass is 250 kg, typical value of a satellite.
Fig. 12, Fig. 13 and Fig. 14 show the data along the
components (z,y,x) measured during the experiment. Each
figure shows the energy observed without (w/o) PC, the
energy with (w) PC, the damping coefficient β , the velocity
corrected by the PC, the measured force F and the relative
position of the robot, respectively. As it can be seen, the
Eobs w/o the PC results in a negative energy which can
produce an active behavior. However, this active energy is
corrected by the PC which commands a velocity correction
vpc as a function of the damping coefficient β to preserve
the passivity condition. Indeed, the passivity proof of the
method is described by the energy observed with the PC
in each figure which results to be positive, thus, passive

defined as the area of the polygon Q, ∆E is given by:

∆E = Area(acde)

= Area(abde)+Area(bcd)

= [P(k− 1)−P(t)]T +
1
2

T [P(t)−P(t−T )]

= F(k− 1)T [v(k− 1)− v(t)]

+
1
2

TF(k− 1)[v(t)− v(t−T)],

where [v(t)− v(t − T )] = F(k−1)
m T . Then, it is possible to

write:

∆E = F(k− 1)T [v(k− 1)− v(t)]+
1
2

T F(k− 1)
F(k− 1)

m
T

= F(k− 1)T [v(k− 1)− v(t)]+
T 2F(k− 1)2

2m
= F(k− 1)T [v(k− 1)− v(t)]+∆H,

(11)

which results in a difference:

∆E −∆H = F(k− 1)T [v(k− 1)− v(t)]. (12)

Similarly, in part B of Fig. 6, ∆E is given by the sum of the
areas of rectangle abde and triangle bcd, which results in:

∆E −∆H = F(k− 1)T [v(k− 1)− v(t−T )]. (13)

Equation (12) and (13) represent analytically the error be-
tween ∆E and ∆H (shown in Fig. 5). The equations clearly
show that as the sampling rate increases, ∆E gets closer to
∆H since v(k − 1) gets closer to v(t) and v(t − T ). In the
graphical analysis, this turns to be a smaller area of rectangle
abde.
This analysis shows that there is always a difference between
what we can estimate in real time, namely ∆H, and the real
difference between the energetic behavior in the discrete
case and in the real case. This error is due to the loss of
information related to the discretization process and it can
not be avoided. Such a difference gets smaller as the sample
time gets lower.
However, adjusting the output velocity for recovering the
passivity of the discrete model has several advantages. First,
a physical behavior of the discrete dynamics is ensured. The
evolution will be close to the ideal one in the limits reported
in (12). Second, a stable interactive behavior is achieved
thanks to the passivity of the discrete dynamics.

C. Passive Integration scheme

TDPA is a passivity ensuring tool widely applied in
the fields of haptics and time-delayed teleoperation. The
underlying principle of TDPA is to observe the input and
output energy flow (with the Passivity Observer) of a single-
port network, (the virtual environment, in case of haptics)
or a 2-port network (the communication channel with delay,
in case of teleoperation) [20]. The passivity condition for a
two-port network is given by:

nT

∑
k=0

(F1(k)v1(k)T +F2(k)v2(k)T )+E(0)≥ 0, (14)

where (Fi,vi) and E(0) are the power correlated variable
sets of port i = 1,2, and the initial energy storage of the
network respectively. If condition (14) holds, the system is
defined to be passive. The extra energy generated in the
port that violates the passivity condition is dissipated with
a time-varying damper, the Passivity Controller (PC). In an
admittance like architecture, the equation for the observed
energy is:

E(k) = E(k− 1)+
nT

∑
k=0

(F1(k)v1(k)T +F2(k)v2(k)T )

+β (k− 1)F(k− 1)2T, (15)

where β is a time-varying damper later discussed. We can
represent the discretization problem with a network analogy
proposed in Fig. 7 where Ec can be seen as the energy in
continuous time which, due to the discretization, assume a
value of Ed . Considering the 2-port as shown in Fig. 7, the
energy observer then becomes,

Eobs(k) = Eobs(k− 1)+Ec(k)−Ed(k)

+β (k− 1)F(k− 1)2T,

= Eobs(k− 1)−∆E(k)+β (k− 1)F(k− 1)2T,

≈ Eobs(k− 1)−∆H(k)+β (k− 1)F(k− 1)2T,

(16)

where ∆E(k) has been approximated to ∆H(k) as per equa-
tion (11). Notice that the energy observer will measure an
active energy as soon as there is an external force (which
causes ∆H).
At each integration step Eobs must be greater than zero for
ensuring the passivity. Therefore, it is possible to define the
time-varying damper β (k), function of the observed energy
(16), as follows:

β (k) =
{

−
Eobs(k)
F(k)2T

Eobs(k)< 0

0 else.
(17)

The velocity corrected by the PC is given by the following
quantity:

vpc(k) = β (k)F(k). (18)

DiscretizationEc F(t)

v(t)

EdF(k)

v(k)

Discrete Syst. F(k)

v(k) vc(k)

β (Eobs)

Fig. 7: Continuous energy (Ec) and discrete energy (Ed).
Analogue discrete system with the designed variable damper.
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∆E −∆H = F(k− 1)T [v(k− 1)− v(t−T )]. (13)

Equation (12) and (13) represent analytically the error be-
tween ∆E and ∆H (shown in Fig. 5). The equations clearly
show that as the sampling rate increases, ∆E gets closer to
∆H since v(k − 1) gets closer to v(t) and v(t − T ). In the
graphical analysis, this turns to be a smaller area of rectangle
abde.
This analysis shows that there is always a difference between
what we can estimate in real time, namely ∆H, and the real
difference between the energetic behavior in the discrete
case and in the real case. This error is due to the loss of
information related to the discretization process and it can
not be avoided. Such a difference gets smaller as the sample
time gets lower.
However, adjusting the output velocity for recovering the
passivity of the discrete model has several advantages. First,
a physical behavior of the discrete dynamics is ensured. The
evolution will be close to the ideal one in the limits reported
in (12). Second, a stable interactive behavior is achieved
thanks to the passivity of the discrete dynamics.

C. Passive Integration scheme

TDPA is a passivity ensuring tool widely applied in
the fields of haptics and time-delayed teleoperation. The
underlying principle of TDPA is to observe the input and
output energy flow (with the Passivity Observer) of a single-
port network, (the virtual environment, in case of haptics)
or a 2-port network (the communication channel with delay,
in case of teleoperation) [20]. The passivity condition for a
two-port network is given by:

nT

∑
k=0

(F1(k)v1(k)T +F2(k)v2(k)T )+E(0)≥ 0, (14)

where (Fi,vi) and E(0) are the power correlated variable
sets of port i = 1,2, and the initial energy storage of the
network respectively. If condition (14) holds, the system is
defined to be passive. The extra energy generated in the
port that violates the passivity condition is dissipated with
a time-varying damper, the Passivity Controller (PC). In an
admittance like architecture, the equation for the observed
energy is:

E(k) = E(k− 1)+
nT

∑
k=0

(F1(k)v1(k)T +F2(k)v2(k)T )

+β (k− 1)F(k− 1)2T, (15)

where β is a time-varying damper later discussed. We can
represent the discretization problem with a network analogy
proposed in Fig. 7 where Ec can be seen as the energy in
continuous time which, due to the discretization, assume a
value of Ed . Considering the 2-port as shown in Fig. 7, the
energy observer then becomes,

Eobs(k) = Eobs(k− 1)+Ec(k)−Ed(k)

+β (k− 1)F(k− 1)2T,

= Eobs(k− 1)−∆E(k)+β (k− 1)F(k− 1)2T,

≈ Eobs(k− 1)−∆H(k)+β (k− 1)F(k− 1)2T,

(16)

where ∆E(k) has been approximated to ∆H(k) as per equa-
tion (11). Notice that the energy observer will measure an
active energy as soon as there is an external force (which
causes ∆H).
At each integration step Eobs must be greater than zero for
ensuring the passivity. Therefore, it is possible to define the
time-varying damper β (k), function of the observed energy
(16), as follows:

β (k) =
{

−
Eobs(k)
F(k)2T

Eobs(k)< 0

0 else.
(17)

The velocity corrected by the PC is given by the following
quantity:

vpc(k) = β (k)F(k). (18)
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Fig. 7: Continuous energy (Ec) and discrete energy (Ed).
Analogue discrete system with the designed variable damper.
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Results: Energy comparison 

The energy is preserved for the simulated rigid body 
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Fig. 11: Mechanical energy with the proposed method con-
sidering sampling time (T1 and T2) and comparison with the
continuous case (Hc).
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Fig. 12: Experiment results - Energy observed (without and
with PC), damping factor βz, velocity corrected by the PC,
forces measured Fz and motion of the robot in z.

accordingly with (14). The difference in the observed energy
(and consequently the vpc) for each direction is due to the
different magnitudes of applied forces, e.g. along the z the
force reaches 60 N, lower values for x and y, therefore,
the extra energy term ∆H will be different. The experiment
results prove that the integration method can deal also with
sensor noise and model uncertainties, typical issues intrinsic
in the hardware. An additional experiment can be also seen
in the accompanying video.

VI. CONCLUSIONS AND FUTURE WORK

A new explicit and passive integration method for re-
producing a Cartesian rigid body dynamics on a robot
has been proposed. Starting from the simple and standard
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Fig. 13: Experiment results - Energy observed (without and
with PC), damping factor βy, velocity corrected by the PC,
forces measured Fy and motion of the robot in y.
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Fig. 14: Experiment results - Energy observed (without and
with PC), damping factor βx, velocity corrected by the PC,
forces measured Fx and motion of the robot in x.

Euler integrator, we proposed a strategy based on TDPA for
modifying the velocity of the Euler integrator and to render
the discrete dynamics passive. The method does not consider
the model of the robot which simulates the desired dynamics
and, therefore, it can be applied to any robotic simulator. The
effectiveness of the proposed approach has been validated
in simulations and on the OOS-SIM, a robotic system that
simulates a satellite dynamics.
Future work aims at extending the proposed integrator for
considering the full rigid body dynamics, i.e. rotations and
translations. Furthermore, we aim at extending the proposed
approach to more generic scenarios (e.g. coupling between
the servicer robot and the satellite).

the system. Notice that if there is not interaction (i.e. F= 0),
then the energy stored in the system is constant (i.e. Ḣ = 0).
The model (2) can be rewritten as:

⎧

⎨

⎩

v = M−1p

ṗ = F.
(4)

Integrating the desired dynamics using the standard Euler
method leads to the following discrete system:

⎧

⎨

⎩

x(k) = x(k− 1)+TM−1p(k)

p(k) = p(k− 1)+TF(k− 1),
(5)

where the second line is equivalent to the following velocity
integration strategy:

v(k) = v(k− 1)+TM−1F(k− 1), (6)

In case of free motion (i.e. F(k− 1) = 0), the momentum
and, consequently, the energy of the system are constant over
time. Thus, in this very simple case, straight Euler integration
is energetically well posed since it allows the discretized
dynamics to behave physically independently of the sample
time.
Unfortunately this well posedness does not hold anymore
in case of interaction. This can be easily shown by a 1-
DOF example. Consider the force profile, shown at the top
of Fig. 3, which acts on a mass of 30 kg. The integration
of the dynamics is considered in the continuous case and
compared with the Euler discrete integrator for sampling
time: T1 = 0.1 s, T2 = 0.01 s. Fig. 4 clearly shows the
increase in the energy which is introduced into the system
with respect to the continuous time integrator (Hc is the
energy calculated in continuous time). Notice that the larger
the sampling time, the larger is the increase of energy which
leads to a drift in the position. The drift due to the integration
with T1 reaches 0.05 m (when the force profile acts between
0s and 32s) and 0.15 m between 32 s and 50 s, (see Fig. 3
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Fig. 4: Problem statement: mechanical energy considering
different sampling time (HT1 and HT2 ) and comparison with
the continuous case Hc.

middle). Also for the case with T2, the drift appears. Since the
sampling time is smaller, it results in a drift 10 times lower,
as shown in Fig. 3 bottom. This drift causes inconsistency
in simulating the desired dynamics with a discrete integrator
that is usually implemented for rendering a desired dynamics
with a robot. The robot will receive position commands
accordingly but, as it has been shown, the energy properties
of the simulated mass will be not preserved. Such a drift may
lead the robot to interact to unforeseen objects that produce
new (drifted) behaviors leading to a deteriorated performance
of the system.
The goal of this work is to design a controlled Euler integra-
tion method that preserves the energetic balance in (3) in the
discrete case. In this way, it will be possible to reproduce by
the robotic simulator the behavior (1) while preserving its
energetic properties independently of the sample time.

III. THE PASSIVITY-BASED INTEGRATION METHOD

As shown in Sec. II, the extra energy due to the discrete in-
tegration makes the energy behavior of the discrete dynamic
system different from that of its continuous counterpart.
In this section, we formally identify the extra energy intro-
duced by the discrete integrator and we exploit this informa-
tion for adjusting the velocity output of the Euler integrator
using the TDPA. An analysis of the energy behavior of the
continuous and discrete time systems is presented and the
passivity-based integrator scheme is introduced.

A. Energy produced by the Euler integration method

Consider the dynamics (1) discretized by means of the
Euler method and reported in (5). The discrete kinetic energy
H(k) is given by:

H(k) =
1
2

p(k)T M−1p(k) =

1
2
[p(k− 1)+TF(k− 1)]T M−1[p(k− 1)+TF(k− 1)], (7)

Energy drift considering different sampling time:  
before applying the method 

Energy considering different sampling time:  
with the proposed method 
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Passive integrator: extention to coupled dynamics  
Energy generated by the Euler integrator: 

where T is the sampling time. Consequently, the angular
velocity set-point to be commanded to the robot is:

ω(k)=ω(k−1)+I−1T S(Iω(k− 1))ω(k− 1)+TI−1τ(k−1).
(5)

On the other hand, the Euler integration will generate some
extra energy which destroys the energetic properties of the
simulated dynamics. This can be seen in the following
example which states the problem. Let us consider a torque
profile as in Fig. 3 (top) acting on a simulated body with
inertia on the principal axis I = diag(18,20,22)Kgm2.
We consider two different sampling times T1 = 0.1s and
T2 = 0.01s and we calculate the energy H for both cases.
Fig. 4 shows a comparison of the energy calculated with
the continuous time (Hc) and discrete times (HT1 ,HT2 ). It is
proved that there is an increase in energy due to the discrete
integration. This increase of energy results also in a variation
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Fig. 3: Applied torques (top) and drift in roll, pitch and yaw
considering sampling time T1 (middle) and T2 (bottom).
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Fig. 4: Problem Statement: energy in continuous time (Hc)
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of the angular position of the robot with respect to the ideal,
continuous case. Indeed, Fig. 3 shows the angular error (∆)
in roll, pitch and yaw (Ψ,θ ,φ ) calculated with T1 and T2

with respect to the continuous case.

III. ENERGY CONSISTENT PASSIVE INTEGRATION

In this section we identify the energy generated by the
Euler integrator method which causes the damaging effect
discussed in Sec. II. We will then propose a methodology
for dissipating the extra energy and for re-establishing the
energetic properties of the discretized dynamics.

A. Energy generated by the Euler integrator

In order to understand where the energy due to the Euler
method is generated, we propose a discrete energy analysis
on the discretized dynamics. Considering that (I−1)T =
(IT )−1 ≡ I−1 and substituting (5) into (2) we have:

H(k) =
1

2
{ω(k− 1)T Iω(k− 1)

+Tω(k− 1)T S(Iω(k− 1))ω(k− 1)

+Tω(k− 1)T τ(k− 1)

+Tω(k− 1)T S(Iω(k− 1))T ω(k− 1)

+T 2ω(k− 1)T S(Iω(k− 1))T I−1S(Iω(k− 1))ω(k− 1)

+T 2ω(k− 1)T S(Iω(k− 1))T I−1τ(k− 1)

+Tτ(k− 1)T ω(k− 1)

+T 2τ(k− 1)T I−1S(Iω(k− 1))ω(k− 1)

+T 2τ(k− 1)T I−1τ(k− 1)}. (6)

Furthermore, exploiting the skew-symmetry of matrix S(·),
it is possible to simplify (6)1 as:

H(k) = H(k− 1)+
1

2
T ω(k− 1)T τ(k− 1)

+
1

2
T 2ω(k− 1)T S(Iω(k− 1))T I−1S(Iω(k− 1))ω(k− 1)

+
1

2
T τ(k− 1)T ω(k− 1)+

1

2
T 2τ(k− 1)T I−1τ(k− 1),

(7)

where H(k−1) = 1
2 ω(k− 1)T Iω(k− 1). Thus, it is possible

to identify the total energy generated during the Euler
integration for the rotational dynamics as follows:

H(k) = H(k− 1)+Tω(k− 1)T τ(k− 1)

+
1

2
T 2ω(k− 1)T S(Iω(k− 1))T I−1S(Iω(k− 1))ω(k− 1)

︸ ︷︷ ︸

∆H1

+
1

2
T 2τ(k− 1)T I−1τ(k− 1)

︸ ︷︷ ︸

∆H2

. (8)

Notice that (8) does not correspond to a physical behavior. In
fact, the energy variation should be due only to the energy
provided through the power port, i.e. Tω(k− 1)T τ(k − 1).

1The terms on the even lines of (6) will result to be equal and opposite
in sign.

where T is the sampling time. Consequently, the angular
velocity set-point to be commanded to the robot is:

ω(k)=ω(k−1)+I−1T S(Iω(k− 1))ω(k− 1)+TI−1τ(k−1).
(5)

On the other hand, the Euler integration will generate some
extra energy which destroys the energetic properties of the
simulated dynamics. This can be seen in the following
example which states the problem. Let us consider a torque
profile as in Fig. 3 (top) acting on a simulated body with
inertia on the principal axis I = diag(18,20,22)Kgm2.
We consider two different sampling times T1 = 0.1s and
T2 = 0.01s and we calculate the energy H for both cases.
Fig. 4 shows a comparison of the energy calculated with
the continuous time (Hc) and discrete times (HT1 ,HT2 ). It is
proved that there is an increase in energy due to the discrete
integration. This increase of energy results also in a variation
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Fig. 3: Applied torques (top) and drift in roll, pitch and yaw
considering sampling time T1 (middle) and T2 (bottom).
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of the angular position of the robot with respect to the ideal,
continuous case. Indeed, Fig. 3 shows the angular error (∆)
in roll, pitch and yaw (Ψ,θ ,φ ) calculated with T1 and T2

with respect to the continuous case.

III. ENERGY CONSISTENT PASSIVE INTEGRATION

In this section we identify the energy generated by the
Euler integrator method which causes the damaging effect
discussed in Sec. II. We will then propose a methodology
for dissipating the extra energy and for re-establishing the
energetic properties of the discretized dynamics.

A. Energy generated by the Euler integrator

In order to understand where the energy due to the Euler
method is generated, we propose a discrete energy analysis
on the discretized dynamics. Considering that (I−1)T =
(IT )−1 ≡ I−1 and substituting (5) into (2) we have:
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+T 2τ(k− 1)T I−1τ(k− 1)}. (6)

Furthermore, exploiting the skew-symmetry of matrix S(·),
it is possible to simplify (6)1 as:

H(k) = H(k− 1)+
1

2
T ω(k− 1)T τ(k− 1)

+
1

2
T 2ω(k− 1)T S(Iω(k− 1))T I−1S(Iω(k− 1))ω(k− 1)

+
1

2
T τ(k− 1)T ω(k− 1)+

1

2
T 2τ(k− 1)T I−1τ(k− 1),

(7)

where H(k−1) = 1
2 ω(k− 1)T Iω(k− 1). Thus, it is possible

to identify the total energy generated during the Euler
integration for the rotational dynamics as follows:

H(k) = H(k− 1)+Tω(k− 1)T τ(k− 1)

+
1

2
T 2ω(k− 1)T S(Iω(k− 1))T I−1S(Iω(k− 1))ω(k− 1)

︸ ︷︷ ︸

∆H1

+
1

2
T 2τ(k− 1)T I−1τ(k− 1)

︸ ︷︷ ︸

∆H2

. (8)

Notice that (8) does not correspond to a physical behavior. In
fact, the energy variation should be due only to the energy
provided through the power port, i.e. Tω(k− 1)T τ(k − 1).

1The terms on the even lines of (6) will result to be equal and opposite
in sign.

where ∥χ(k)∥2 = χ(k)T χ(k).
Since the robot can be controlled only in admittance mode,
the PC has an admittance causality and it will provide the
following angular velocity:

ωpc(k) = β (k)χ(k). (13)

This is used for correcting the output of the Euler integrator
as:

ωc(k) = ω(k)−ωpc(k), (14)

where ωc(k) represents the velocity commanded to the robot.
The algorithm of the passive integration presented in this
section can be found in Alg. 1.4 Thus, the admittance scheme
is modified accordingly with the presented algorithm and it is
shown in Fig. 6. Notice that the new elements are reported
within the dotted line. χ is function of τ and τc which is
used for the energy observer and the passivity controller. β
is the variable damper defined in (12) and ωc is the corrected
velocity sent to the robot.

Algorithm 1 Passive Integration Algorithm

Input: E(k− 1),ω(k− 1),τ(k)
Output: ωc(k)

1: ∆(k) = 1
2 T 2ω(k− 1)T S(k − 1)T I−1S(k − 1)ω(k− 1) +

1
2 T 2τ(k− 1)T I−1τ(k− 1)

2: χ(k) = τ(k)+ 1
2 T 2ω(k)T S(k)T I−1S(k)

3: Eobs(k) = E(k−1)−∆(k)+T χ(k− 1)T β (k− 1)χ(k− 1)

4: if Eobs(k)< 0 then

5: β (k) =− Eobs(k)

T∥χ(k)∥2

6: else β (k) = 0

7: ωc(k) = ω(k)−β (k)χ(k)

Rob.
inv.kin.

τ
E

ωc

Rot. Dyn. T ∑ω̇ ω

PC χ Eobs

β

Fig. 6: Admittance scheme (dashed line) with the new
elements (dotted line).

4The dependency of Iω is omitted in the skew matrix S(Iω) for brevity.

IV. SIMULATIONS

In this section, two simulations are performed to verify the
new integration scheme. The inertia matrix of the simulated
rigid body and the torque input profile are the same as
reported in Sec. II.

Simulation 1: The first simulation integrates the rotational
dynamics with sampling time T1 = 0.1 s. Fig. 7 shows
the results of the energy observer which measures active
energy due to the integrator and the passivity controller acts
providing the corrected velocity ωpc. The passivity proof (i.e.
the Eobs w PC) is given at the bottom of Fig. 7 which results
to be equal/greater than zero. Therefore, it results in a passive
integration.

Simulation 2: A second simulation was performed consid-
ering a sampling time T2 = 0.01 s and it is shown in Fig. 8.
Also in this case the generated energy is damped out and the
passivity proof is shown at the bottom of Fig. 8.
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Fig. 7: Sim. 1 with T1 - Energy observed, angular velocity
correction and passivity proof.
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Fig. 8: Sim. 2 with T2 - Energy observed, angular velocity
correction and passivity proof.
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Summary 

 
•  The OOS-SIM was presented as an on-ground facility 

for testing on-orbit servicing tasks 

 
•  Autonomy, Telepresence and Shared-control 

algorithms can be tested  

 
•  Main issues in rendering passive  free-floating 

dynamics are addressed  
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•  Time delay and discretization can lead to a non-physical behaviour of the simulated 
dynamics 

 
 
•  Energy-based methods have been develop to realistically simulate physical dynamics 
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